[torch 参数更多 ]torch.full_like

torch.full_like

torch.full_like(input,
                fill_value,
                *,
                dtype=None,
                layout=torch.strided,
                device=None,
                requires_grad=False,
                memory_format=torch.preserve_format)

paddle.full_like

paddle.full_like(x,
                 fill_value,
                 dtype=None,
                 name=None)

PyTorch 相比 Paddle 支持更多其他参数,具体如下:

参数映射

PyTorch PaddlePaddle 备注
input x 表示输入的 Tensor ,仅参数名不一致。
fill_value fill_value 表示填充值。
dtype dtype 表示数据类型。
layout - 表示布局方式, Paddle 无此参数,一般对网络训练结果影响不大,可直接删除。
device - 表示 Tensor 存放设备位置,Paddle 无此参数,需要转写。
requires_grad - 表示是否计算梯度, Paddle 无此参数,需要转写。
memory_format - 表示内存格式, Paddle 无此参数,一般对网络训练结果影响不大,可直接删除。

转写示例

device: Tensor 的设备

# PyTorch 写法
torch.full_like(x, 1., device=torch.device('cpu'))

# Paddle 写法
y = paddle.full_like(x, 1.)
y.cpu()

#### requires_grad:是否需要求反向梯度,需要修改该 Tensor 的 stop_gradient 属性
```python
# PyTorch 写法
x = torch.full_like([3, 5], 1., requires_grad=True)

# Paddle 写法
x = paddle.full_like([3, 5], 1.)
x.stop_gradient = False