fluid¶
BuildStrategy¶
-
class
paddle.fluid.
BuildStrategy
¶
BuildStrategy
使用户更精准地控制 ParallelExecutor
中SSA图的建造方法。可通过设置 ParallelExecutor
中的 BuildStrategy
成员来实现此功能。
代码示例
import paddle.fluid as fluid
build_strategy = fluid.BuildStrategy()
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
-
debug_graphviz_path
¶
str类型。它表明了以graphviz格式向文件中写入SSA图的路径,有利于调试。 默认值为""。
代码示例
import paddle.fluid as fluid
build_strategy = fluid.BuildStrategy()
build_strategy.debug_graphviz_path = ""
-
enable_sequential_execution
¶
类型是BOOL。 如果设置为True,则ops的执行顺序将与program中的执行顺序相同。 默认为False。
代码示例
import paddle.fluid as fluid
build_strategy = fluid.BuildStrategy()
build_strategy.enable_sequential_execution = True
-
fuse_broadcast_ops
¶
bool类型。它表明了是否融合(fuse)broadcast ops。值得注意的是,在Reduce模式中,融合broadcast ops可以使程序运行更快,因为这个过程等同于延迟执行所有的broadcast ops。在这种情况下,所有的nccl streams仅用于一段时间内的NCCLReduce操作。默认为False。
-
fuse_elewise_add_act_ops
¶
bool类型。它表明了是否融合(fuse)elementwise_add_op和activation_op。这会使整体执行过程更快一些。默认为False。
代码示例
import paddle.fluid as fluid
build_strategy = fluid.BuildStrategy()
build_strategy.fuse_elewise_add_act_ops = True
-
fuse_relu_depthwise_conv
¶
BOOL类型,fuse_relu_depthwise_conv指示是否融合relu和depthwise_conv2d,它会节省GPU内存并可能加速执行过程。 此选项仅适用于GPU设备。 默认为False。
代码示例
import paddle.fluid as fluid
build_strategy = fluid.BuildStrategy()
build_strategy.fuse_relu_depthwise_conv = True
-
gradient_scale_strategy
¶
str类型。在 ParallelExecutor
中,存在三种定义 loss@grad 的方式,分别为 CoeffNumDevice
, One
与 Customized
。默认情况下, ParallelExecutor
根据设备数目来设置 loss@grad 。如果你想自定义 loss@grad ,你可以选择 Customized
方法。默认为 CoeffNumDevice
。
代码示例
import paddle.fluid as fluid
build_strategy = fluid.BuildStrategy()
build_strategy.gradient_scale_strategy = True
-
memory_optimize
¶
bool类型。设为True时可用于减少总内存消耗。为实验性属性,一些变量可能会被优化策略重用/移除。如果你需要在使用该特征时获取某些变量,请把变量的persistable property设为True。默认为False。
-
reduce_strategy
¶
str类型。在 ParallelExecutor
中,存在两种减少策略(reduce strategy),即 AllReduce
和 Reduce
。如果你需要在所有执行场所上独立地进行参数优化,可以使用 AllReduce
。反之,如果使用 Reduce
策略,所有参数的优化将均匀地分配给不同的执行场所,随之将优化后的参数广播给其他执行场所。在一些模型中, Reduce
策略执行速度更快一些。默认值为 AllReduce
。
代码示例
import paddle.fluid as fluid
build_strategy = fluid.BuildStrategy()
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
-
remove_unnecessary_lock
¶
BOOL类型。如果设置为True, GPU操作中的一些锁将被释放,ParallelExecutor将运行得更快,默认为 True。
代码示例
import paddle.fluid as fluid
build_strategy = fluid.BuildStrategy()
build_strategy.remove_unnecessary_lock = True
-
sync_batch_norm
¶
类型为bool,sync_batch_norm表示是否使用同步的批正则化,即在训练阶段通过多个设备同步均值和方差。
当前的实现不支持FP16训练和CPU。仅在一台机器上进行同步式批正则,不适用于多台机器。
默认为 False。
代码示例
import paddle.fluid as fluid
build_strategy = fluid.BuildStrategy()
build_strategy.sync_batch_norm = True
CompiledProgram¶
编译成一个用来执行的Graph。
- 首先使用layers(网络层)创建程序。
- (可选)可使用CompiledProgram来在运行之前优化程序。
- 定义的程序或CompiledProgram由Executor运行。
CompiledProgram用于转换程序以进行各种优化。例如,
- 预先计算一些逻辑,以便每次运行更快。
- 转换Program,使其可以在多个设备中运行。
- 转换Program以进行优化预测或分布式训练。注意:此部分尚未完成。
代码示例
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import numpy
import os
place = fluid.CUDAPlace(0) # fluid.CPUPlace()
exe = fluid.Executor(place)
data = fluid.layers.data(name='X', shape=[1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)
fluid.default_startup_program().random_seed=1
exe.run(fluid.default_startup_program())
compiled_prog = compiler.CompiledProgram(
fluid.default_main_program())
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = exe.run(compiled_prog,
feed={"X": x},
fetch_list=[loss.name])
- 参数:
- program_or_graph (Graph|Program): 如果它是Program,那么它将首先被降成一个graph,以便进一步优化。如果它是一个graph(以前可能优化过),它将直接用于进一步的优化。注意:只有使用 with_data_parallel 选项编译时才支持graph。
-
with_data_parallel
(loss_name=None, build_strategy=None, exec_strategy=None, share_vars_from=None, places=None)¶
配置Program使其以数据并行方式运行。
代码示例
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import numpy
import os
use_cuda = True
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
#注意:如果你使用CPU运行程序,需要具体设置CPU_NUM,
#否则fluid会把逻辑核的所有数目设为CPU_NUM,
#在这种情况下,输入的batch size应大于CPU_NUM,
#否则程序会异常中断。
if not use_cuda:
os.environ['CPU_NUM'] = str(2)
exe = fluid.Executor(place)
data = fluid.layers.data(name='X', shape=[1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)
fluid.default_startup_program().random_seed=1
exe.run(fluid.default_startup_program())
compiled_prog = compiler.CompiledProgram(
fluid.default_main_program()).with_data_parallel(
loss_name=loss.name)
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = exe.run(compiled_prog,
feed={"X": x},
fetch_list=[loss.name])
- 参数:
- loss_name (str) - 损失函数名称必须在训练过程中设置。 默认None。
- build_strategy (BuildStrategy) - build_strategy用于构建图,因此它可以在具有优化拓扑的多个设备/核上运行。 有关更多信息,请参阅
fluid.BuildStrategy
。 默认None。 - exec_strategy (ExecutionStrategy) - exec_strategy用于选择执行图的方式,例如使用多少线程,每次清理临时变量之前进行的迭代次数。 有关更多信息,请参阅
fluid.ExecutionStrategy
。 默认None。 - share_vars_from (CompiledProgram) - 如果有,此CompiledProgram将共享来自share_vars_from的变量。 share_vars_from指定的Program必须由此CompiledProgram之前的Executor运行,以便vars准备就绪。
- places (list(CUDAPlace)|list(CPUPlace)|None) - 如果提供,则仅在给定位置编译程序。否则,编译时使用的位置由Executor确定,使用的位置由环境变量控制:如果使用GPU,则标记FLAGS_selected_gpus或CUDA_VISIBLE_DEVICES设备;如果使用CPU,则标记CPU_NUM。例如,如果要在GPU 0和GPU 1上运行,请设置places=[fluid.CUDAPlace(0), fluid.CUDAPlace(1)]。如果要在2个CPU核心上运行,请设置places=[fluid.CPUPlace()]*2。
返回: self
-
with_inference_optimize
(config)¶
添加预测优化。
- 参数:
- config - 用于创建预测器的NativeConfig或AnalysisConfig的实例
返回: self
cpu_places¶
创建 fluid.CPUPlace
对象列表。
如果 device_count
为None,则设备数目将由环境变量 CPU_NUM
确定。如果未设置 CPU_NUM
,则设备数目默认为1,也就是说, CPU_NUM
=1。
- 参数:
- device_count (None|int) - 设备数目
返回: CPUPlace列表
返回类型:out (list(fluid.CPUPlace))
代码示例
import paddle.fluid as fluid
cpu_places = fluid.cpu_places()
CPUPlace¶
-
class
paddle.fluid.
CPUPlace
¶
CPUPlace是设备的描述符。它代表一个CPU,可以访问CPUPlace对应的内存。
代码示例
import paddle.fluid as fluid
cpu_place = fluid.CPUPlace()
create_lod_tensor¶
该函数从一个numpy数组,列表或者已经存在的lod tensor中创建一个lod tensor。
通过一下几步实现:
- 检查length-based level of detail (LoD,长度为基准的细节层次),或称recursive_sequence_lengths(递归序列长度)的正确性
- 将recursive_sequence_lengths转化为offset-based LoD(偏移量为基准的LoD)
- 把提供的numpy数组,列表或者已经存在的lod tensor复制到CPU或GPU中(依据执行场所确定)
- 利用offset-based LoD来设置LoD
例如:
假如我们想用LoD Tensor来承载一词序列的数据,其中每个词由一个整数来表示。现在,我们意图创建一个LoD Tensor来代表两个句子,其中一个句子有两个词,另外一个句子有三个。那么数 data
可以是一个numpy数组,形状为(5,1)。同时, recursive_seq_lens
为 [[2, 3]],表明各个句子的长度。这个长度为基准的 recursive_seq_lens
将在函数中会被转化为以偏移量为基准的 LoD [[0, 2, 5]]。
import paddle.fluid as fluid
import numpy as np
t = fluid.create_lod_tensor(np.ndarray([5, 30]), [[2, 3]], fluid.CPUPlace())
参考 张量 以获取更多关于LoD的信息。
- 参数:
- data (numpy.ndarray|list|LoDTensor) – 容纳着待复制数据的一个numpy数组、列表或LoD Tensor
- recursive_seq_lens (list) – 一组列表的列表, 表明了由用户指明的length-based level of detail信息
- place (Place) – CPU或GPU。 指明返回的新LoD Tensor存储地点
返回: 一个fluid LoDTensor对象,包含数据和 recursive_seq_lens
信息
create_random_int_lodtensor¶
该函数创建一个存储多个随机整数的LoD Tensor。
该函数是经常在书中出现的案例,所以我们根据新的API: create_lod_tensor
更改它然后放在LoD Tensor板块里来简化代码。
该函数实现以下功能:
- 根据用户输入的length-based
recursive_seq_lens
(基于长度的递归序列长)和在basic_shape
中的基本元素形状计算LoDTensor的整体形状 - 由此形状,建立numpy数组
- 使用API:
create_lod_tensor
建立LoDTensor
假如我们想用LoD Tensor来承载一词序列,其中每个词由一个整数来表示。现在,我们意图创建一个LoD Tensor来代表两个句子,其中一个句子有两个词,另外一个句子有三个。那么 base_shape
为[1], 输入的length-based recursive_seq_lens
是 [[2, 3]]。那么LoDTensor的整体形状应为[5, 1],并且为两个句子存储5个词。
- 参数:
- recursive_seq_lens (list) – 一组列表的列表, 表明了由用户指明的length-based level of detail信息
- base_shape (list) – LoDTensor所容纳的基本元素的形状
- place (Place) – CPU或GPU。 指明返回的新LoD Tensor存储地点
- low (int) – 随机数下限
- high (int) – 随机数上限
返回: 一个fluid LoDTensor对象,包含张量数据和 recursive_seq_lens
信息
代码示例
import paddle.fluid as fluid
t = fluid.create_random_int_lodtensor(recursive_seq_lens=[[2, 3]],base_shape=[30], place=fluid.CPUPlace(), low=0, high=10)
cuda_pinned_places¶
创建 fluid.CUDAPinnedPlace
对象列表。
如果 device_count
为None,则设备数目将由环境变量 CPU_NUM
确定。如果未设置 CPU_NUM
,则设备数目将由 multiprocessing.cpu_count()
确定。
- 参数:
- device_count (None|int) - 设备数目
返回: CUDAPinnedPlace对象列表
返回类型:out(list(fluid.CUDAPinnedPlace))
代码示例
import paddle.fluid as fluid
cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
# 或者
cuda_pinned_places = fluid.cuda_pinned_places(1)
cuda_places¶
创建 fluid.CUDAPlace
对象列表。
如果 device_ids
为None,则首先检查 FLAGS_selected_gpus
的环境变量。如果 FLAGS_selected_gpus=0,1,2
,则返回的列表将为[fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)]。如果未设置标志 FLAGS_selected_gpus
,则将返回所有可见的GPU places。
如果 device_ids
不是None,它应该是GPU的设备ID。例如,如果 device_id=[0,1,2]
,返回的列表将是[fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)]。
- 参数:
- device_ids (None|list(int)|tuple(int)) - GPU的设备ID列表
返回: CUDAPlace列表
返回类型:out (list(fluid.CUDAPlace))
代码示例
import paddle.fluid as fluid
cuda_places = fluid.cuda_places()
CUDAPinnedPlace¶
-
class
paddle.fluid.
CUDAPinnedPlace
¶
CUDAPinnedPlace是一个设备描述符,它所指代的存储空间可以被GPU和CPU访问。
代码示例
import paddle.fluid as fluid
place = fluid.CUDAPinnedPlace()
CUDAPlace¶
-
class
paddle.fluid.
CUDAPlace
¶
CUDAPlace是一个设备描述符,它代表一个GPU,并且每个CUDAPlace有一个dev_id(设备id)来表明当前CUDAPlace代表的卡数。dev_id不同的CUDAPlace所对应的内存不可相互访问。
代码示例
import paddle.fluid as fluid
gpu_place = fluid.CUDAPlace(0)
DataFeedDesc¶
数据描述符,描述输入训练数据格式。
这个类目前只用于AsyncExecutor(有关类AsyncExecutor的简要介绍,请参阅注释)
DataFeedDesc应由来自磁盘的有效protobuf消息初始化。
可以参考 paddle/fluid/framework/data_feed.proto
查看我们如何定义message
一段典型的message可能是这样的:
import paddle.fluid as fluid
f = open("data.proto", "w")
print >> f, 'name: "MultiSlotDataFeed"'
print >> f, 'batch_size: 2'
print >> f, 'multi_slot_desc {'
print >> f, ' slots {'
print >> f, ' name: "words"'
print >> f, ' type: "uint64"'
print >> f, ' is_dense: false'
print >> f, ' is_used: true'
print >> f, ' }'
print >> f, ' slots {'
print >> f, ' name: "label"'
print >> f, ' type: "uint64"'
print >> f, ' is_dense: false'
print >> f, ' is_used: true'
print >> f, ' }'
print >> f, '}'
f.close()
data_feed = fluid.DataFeedDesc('data.proto')
但是,用户通常不应该关心消息格式;相反,我们鼓励他们在将原始日志文件转换为AsyncExecutor可以接受的训练文件的过程中,使用 Data Generator
生成有效数据描述。
DataFeedDesc也可以在运行时更改。一旦你熟悉了每个字段的含义,您可以修改它以更好地满足您的需要。例如:
import paddle.fluid as fluid
data_feed = fluid.DataFeedDesc('data.proto')
data_feed.set_batch_size(128)
data_feed.set_dense_slots('wd') # 名为'wd'的slot将被设置为密集的
data_feed.set_use_slots('wd') # 名为'wd'的slot将被用于训练
# 最后,可以打印变量详细信息便于排出错误
print(data_feed.desc())
- 参数:
- proto_file (string) - 包含数据feed中描述的磁盘文件
-
set_batch_size
(batch_size)¶
设置batch size,训练期间有效
- 参数:
- batch_size:batch size
代码示例:
import paddle.fluid as fluid
f = open("data.proto", "w")
print >> f, 'name: "MultiSlotDataFeed"'
print >> f, 'batch_size: 2'
print >> f, 'multi_slot_desc {'
print >> f, ' slots {'
print >> f, ' name: "words"'
print >> f, ' type: "uint64"'
print >> f, ' is_dense: false'
print >> f, ' is_used: true'
print >> f, ' }'
print >> f, ' slots {'
print >> f, ' name: "label"'
print >> f, ' type: "uint64"'
print >> f, ' is_dense: false'
print >> f, ' is_used: true'
print >> f, ' }'
print >> f, '}'
f.close()
data_feed = fluid.DataFeedDesc('data.proto')
data_feed.set_batch_size(128)
-
set_dense_slots
(dense_slots_name)¶
指定slot经过设置后将变成密集的slot,仅在训练期间有效。
密集slot的特征将被输入一个Tensor,而稀疏slot的特征将被输入一个lodTensor
- 参数:
- dense_slots_name : slot名称的列表,这些slot将被设置为密集的
代码示例:
import paddle.fluid as fluid
f = open("data.proto", "w")
print >> f, 'name: "MultiSlotDataFeed"'
print >> f, 'batch_size: 2'
print >> f, 'multi_slot_desc {'
print >> f, ' slots {'
print >> f, ' name: "words"'
print >> f, ' type: "uint64"'
print >> f, ' is_dense: false'
print >> f, ' is_used: true'
print >> f, ' }'
print >> f, ' slots {'
print >> f, ' name: "label"'
print >> f, ' type: "uint64"'
print >> f, ' is_dense: false'
print >> f, ' is_used: true'
print >> f, ' }'
print >> f, '}'
f.close()
data_feed = fluid.DataFeedDesc('data.proto')
data_feed.set_dense_slots(['words'])
注解
默认情况下,所有slot都是稀疏的
-
set_use_slots
(use_slots_name)¶
设置一个特定的slot是否用于训练。一个数据集包含了很多特征,通过这个函数可以选择哪些特征将用于指定的模型。
- 参数:
- use_slots_name :将在训练中使用的slot名列表
代码示例:
import paddle.fluid as fluid
f = open("data.proto", "w")
print >> f, 'name: "MultiSlotDataFeed"'
print >> f, 'batch_size: 2'
print >> f, 'multi_slot_desc {'
print >> f, ' slots {'
print >> f, ' name: "words"'
print >> f, ' type: "uint64"'
print >> f, ' is_dense: false'
print >> f, ' is_used: true'
print >> f, ' }'
print >> f, ' slots {'
print >> f, ' name: "label"'
print >> f, ' type: "uint64"'
print >> f, ' is_dense: false'
print >> f, ' is_used: true'
print >> f, ' }'
print >> f, '}'
f.close()
data_feed = fluid.DataFeedDesc('data.proto')
data_feed.set_use_slots(['words'])
注解
默认值不用于所有slot
-
desc
()¶
返回此DataFeedDesc的protobuf信息
返回:一个message字符串
代码示例:
import paddle.fluid as fluid
f = open("data.proto", "w")
print >> f, 'name: "MultiSlotDataFeed"'
print >> f, 'batch_size: 2'
print >> f, 'multi_slot_desc {'
print >> f, ' slots {'
print >> f, ' name: "words"'
print >> f, ' type: "uint64"'
print >> f, ' is_dense: false'
print >> f, ' is_used: true'
print >> f, ' }'
print >> f, ' slots {'
print >> f, ' name: "label"'
print >> f, ' type: "uint64"'
print >> f, ' is_dense: false'
print >> f, ' is_used: true'
print >> f, ' }'
print >> f, '}'
f.close()
data_feed = fluid.DataFeedDesc('data.proto')
print(data_feed.desc())
DataFeeder¶
DataFeeder
负责将reader(读取器)返回的数据转成一种特殊的数据结构,使它们可以输入到 Executor
和 ParallelExecutor
中。
reader通常返回一个minibatch条目列表。在列表中每一条目都是一个样本(sample),它是由具有一至多个特征的列表或元组组成的。
以下是简单用法:
import paddle.fluid as fluid
place = fluid.CPUPlace()
img = fluid.layers.data(name='image', shape=[1, 28, 28])
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
feeder = fluid.DataFeeder([img, label], fluid.CPUPlace())
result = feeder.feed([([0] * 784, [9]), ([1] * 784, [1])])
在多GPU模型训练时,如果需要提前分别向各GPU输入数据,可以使用 decorate_reader
函数。
import paddle
import paddle.fluid as fluid
place=fluid.CUDAPlace(0)
data = fluid.layers.data(name='data', shape=[3, 224, 224], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
reader = feeder.decorate_reader(
paddle.batch(paddle.dataset.flowers.train(), batch_size=16), multi_devices=False)
- 参数:
- feed_list (list) – 向模型输入的变量表或者变量表名
- place (Place) – place表明是向GPU还是CPU中输入数据。如果想向GPU中输入数据, 请使用
fluid.CUDAPlace(i)
(i 代表 the GPU id);如果向CPU中输入数据, 请使用fluid.CPUPlace()
- program (Program) – 需要向其中输入数据的Program。如果为None, 会默认使用
default_main_program()
。 缺省值为None
- 抛出异常:
ValueError
– 如果一些变量不在此 Program 中
代码示例
import numpy as np
import paddle
import paddle.fluid as fluid
place = fluid.CPUPlace()
def reader():
yield [np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32')],
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
data_1 = fluid.layers.data(name='data_1', shape=[1, 2, 2])
data_2 = fluid.layers.data(name='data_2', shape=[1, 1, 3])
out = fluid.layers.fc(input=[data_1, data_2], size=2)
# ...
feeder = fluid.DataFeeder([data_1, data_2], place)
exe = fluid.Executor(place)
exe.run(startup_program)
for data in reader():
outs = exe.run(program=main_program,
feed=feeder.feed(data),
fetch_list=[out]))
-
feed
(iterable)¶
根据feed_list(数据输入表)和iterable(可遍历的数据)提供的信息,将输入数据转成一种特殊的数据结构,使它们可以输入到 Executor
和 ParallelExecutor
中。
- 参数:
- iterable (list|tuple) – 要输入的数据
返回: 转换结果
返回类型: dict
代码示例
import numpy.random as random
import paddle.fluid as fluid
def reader(limit=5):
for i in range(limit):
yield random.random([784]).astype('float32'), random.random([1]).astype('int64'), random.random([256]).astype('float32')
data_1 = fluid.layers.data(name='data_1', shape=[1, 28, 28])
data_2 = fluid.layers.data(name='data_2', shape=[1], dtype='int64')
data_3 = fluid.layers.data(name='data_3', shape=[16, 16], dtype='float32')
feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
result = feeder.feed(reader())
-
feed_parallel
(iterable, num_places=None)¶
该方法获取的多个minibatch,并把每个minibatch提前输入进各个设备中。
- 参数:
- iterable (list|tuple) – 要输入的数据
- num_places (int) – 设备数目。默认为None。
返回: 转换结果
返回类型: dict
注解
设备(CPU或GPU)的数目必须等于minibatch的数目
代码示例
import numpy.random as random
import paddle.fluid as fluid
def reader(limit=10):
for i in range(limit):
yield [random.random([784]).astype('float32'), random.randint(10)],
x = fluid.layers.data(name='x', shape=[1, 28, 28])
y = fluid.layers.data(name='y', shape=[1], dtype='int64')
feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
place_num = 2
places = [fluid.CPUPlace() for x in range(place_num)]
data = []
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
for item in reader():
data.append(item)
if place_num == len(data):
exe.run(program=program, feed=list(feeder.feed_parallel(data, place_num)), fetch_list=[])
data = []
-
decorate_reader
(reader, multi_devices, num_places=None, drop_last=True)¶
将reader返回的输入数据batch转换为多个mini-batch,之后每个mini-batch都会被输入进各个设备(CPU或GPU)中。
- 参数:
- reader (fun) – 该参数是一个可以生成数据的函数
- multi_devices (bool) – bool型,指明是否使用多个设备
- num_places (int) – 如果
multi_devices
为True
, 可以使用此参数来设置GPU数目。如果multi_devices
为None
,该函数默认使用当前训练机所有GPU设备。默认为None。 - drop_last (bool) – 如果最后一个batch的大小比
batch_size
要小,则可使用该参数来指明是否选择丢弃最后一个batch数据。 默认为True
返回:转换结果
返回类型: dict
抛出异常: ValueError
– 如果 drop_last
值为False并且data batch与设备不匹配时,产生此异常
代码示例
import numpy.random as random
import paddle
import paddle.fluid as fluid
def reader(limit=5):
for i in range(limit):
yield (random.random([784]).astype('float32'), random.random([1]).astype('int64')),
place=fluid.CUDAPlace(0)
data = fluid.layers.data(name='data', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
reader = feeder.decorate_reader(reader, multi_devices=False)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in reader():
exe.run(feed=data)
default_main_program¶
此函数用于获取默认或全局main program(主程序)。该主程序用于训练和测试模型。
fluid.layers
中的所有layer函数可以向 default_main_program
中添加operators(算子)和variables(变量)。
default_main_program
是fluid的许多编程接口(API)的Program参数的缺省值。例如,当用户program没有传入的时候,
Executor.run()
会默认执行 default_main_program
。
返回: main program
返回类型: Program
代码示例
import paddle.fluid as fluid
# Sample Network:
data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
bn1 = fluid.layers.batch_norm(conv1, act='relu')
pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
bn2 = fluid.layers.batch_norm(conv2, act='relu')
pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
fc1 = fluid.layers.fc(pool2, size=50, act='relu')
fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
loss = fluid.layers.cross_entropy(input=fc2, label=label)
loss = fluid.layers.mean(loss)
opt = fluid.optimizer.Momentum(
learning_rate=0.1,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
opt.minimize(loss)
print(fluid.default_main_program())
default_startup_program¶
该函数可以获取默认/全局 startup program (启动程序)。
fluid.layers
中的layer函数会新建参数、readers(读取器)、NCCL句柄作为全局变量。
startup_program会使用内在的operators(算子)去初始化他们,并由layer函数将这些operators追加到startup program中。
该函数将返回默认的或当前的startup_program。用户可以使用 fluid.program_guard
去切换program。
返回: startup program
返回类型: Program
代码示例:
import paddle.fluid as fluid
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program=main_program, startup_program=startup_program):
x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")
print("main program is: {}".format(fluid.default_main_program()))
print("start up program is: {}".format(fluid.default_startup_program()))
DistributeTranspiler¶
该类可以把fluid program转变为分布式数据并行计算程序(distributed data-parallelism programs),可以有Pserver和NCCL2两种模式。
当program在Pserver(全称:parameter server)模式下, main_program
(主程序)转为使用一架远程parameter server(即pserver,参数服务器)来进行参数优化,并且优化图会被输入到一个pserver program中。
在NCCL2模式下,transpiler会在 startup_program
中附加一个 NCCL_ID
广播算子(broadcasting operators)来实现在该集群中所有工作结点共享 NCCL_ID
。
调用 transpile_nccl2
后, 你 必须 将 trainer_id
, num_trainers
参数提供给 ParallelExecutor
来启动NCCL2分布式模式。
代码示例
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_loss)
#pserver模式下
pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
current_endpoint = "192.168.0.1:6174"
trainer_id = 0
trainers = 4
role = "PSERVER"
t = fluid.DistributeTranspiler()
t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
if role == "PSERVER":
pserver_program = t.get_pserver_program(current_endpoint)
pserver_startup_program = t.get_startup_program(current_endpoint, pserver_program)
elif role == "TRAINER":
trainer_program = t.get_trainer_program()
# nccl2模式下
trainer_num = 2
trainer_id = 0
config = fluid.DistributeTranspilerConfig()
config.mode = "nccl2"
trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
t = fluid.DistributeTranspiler(config=config)
t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
exe = fluid.ParallelExecutor(
use_cuda=True,
loss_name=avg_loss.name,
num_trainers=trainer_num,
trainer_id=trainer_id
)
-
transpile
(trainer_id, program=None, pservers='127.0.0.1:6174', trainers=1, sync_mode=True, startup_program=None, current_endpoint='127.0.0.1:6174')¶
该方法可以运行该transpiler(转译器)。转译输入程序。
- 参数:
- trainer_id (int) – 当前Trainer worker的id, 如果有n个Trainer worker, id 取值范围为0 ~ n-1
- program (Program|None) – 待transpile(转译)的program, 缺省为
fluid.default_main_program()
- startup_program (Program|None) - 要转译的
startup_program
,默认为fluid.default_startup_program()
- pservers (str) – 内容为Pserver列表的字符串,格式为:按逗号区分不同的Pserver,每个Pserver的格式为 ip地址:端口号
- trainers (int|str) – 在Pserver模式下,该参数指Trainer机的个数;在nccl2模式下,它是一个内容为Trainer终端列表的字符串
- sync_mode (bool) – 是否做同步训练(synchronous training), 默认为True
- startup_program (Program|None) – 待transpile(转译)的startup_program,默认为
fluid.default_main_program()
- current_endpoint (str) – 当需要把program转译(transpile)至NCCL2模式下时,需要将当前endpoint(终端)传入该参数。Pserver模式不使用该参数
代码示例
import paddle.fluid as fluid
transpiler = fluid.DistributeTranspiler()
t.transpile(
trainer_id=0,
pservers="127.0.0.1:7000,127.0.0.1:7001",
trainers=2,
sync_mode=False,
current_endpoint="127.0.0.1:7000")
-
get_trainer_program
(wait_port=True)¶
该方法可以得到Trainer侧的program。
返回: Trainer侧的program
返回类型: Program
代码示例
import paddle.fluid as fluid
#this is an example, find available endpoints in your case
pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
trainer_id = 0
trainers = 4
t = fluid.DistributeTranspiler()
t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
trainer_program = t.get_trainer_program()
-
get_pserver_program
(endpoint)¶
该方法可以得到Pserver(参数服务器)侧的程序
- 参数:
- endpoint (str) – 当前Pserver终端
返回: 当前Pserver需要执行的program
返回类型: Program
代码示例
import paddle.fluid as fluid
#this is an example, find available endpoints in your case
pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
current_endpoint = "192.168.0.1:6174"
trainer_id = 0
trainers = 4
t = fluid.DistributeTranspiler()
t.transpile(
trainer_id, pservers=pserver_endpoints, trainers=trainers)
pserver_program = t.get_pserver_program(current_endpoint)
-
get_pserver_programs
(endpoint)¶
该方法可以得到Pserver侧用于分布式训练的 main_program
和 startup_program
。
- 参数:
- endpoint (str) – 当前Pserver终端
返回: (main_program, startup_program), “Program”类型的元组
返回类型: tuple
代码示例
import paddle.fluid as fluid
#this is an example, find available endpoints in your case
pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
current_endpoint = "192.168.0.1:6174"
trainer_id = 0
trainers = 4
t = fluid.DistributeTranspiler()
t.transpile(
trainer_id, pservers=pserver_endpoints, trainers=trainers)
pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
-
get_startup_program
(endpoint, pserver_program=None, startup_program=None)¶
该函数已停止使用 获取当前Pserver的startup_program,如果有多个被分散到不同blocks的变量,则修改operator的输入变量。
- 参数:
- endpoint (str) – 当前Pserver终端
- pserver_program (Program) – 已停止使用。 先调用get_pserver_program
- startup_program (Program) – 已停止使用。应在初始化时传入startup_program
返回: Pserver侧的startup_program
返回类型: Program
代码示例
import paddle.fluid as fluid
pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
current_endpoint = "192.168.0.1:6174"
trainer_id = 0
trainers = 4
t = fluid.DistributeTranspiler()
t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
pserver_program = t.get_pserver_program(current_endpoint)
pserver_startup_program = t.get_startup_program(current_endpoint,
pserver_program)
DistributeTranspilerConfig¶
-
slice_var_up
(bool)¶
为多个Pserver(parameter server)将tensor切片, 默认为True。
-
split_method
(PSDispatcher)¶
可使用 RoundRobin 或者 HashName。
注意: 尝试选择最佳方法来达到Pserver间负载均衡。
-
min_block_size
(int)¶
block中分割(split)出的元素个数的最小值。
注意: 根据:issuecomment-369912156 , 当数据块大小超过2MB时,我们可以有效地使用带宽。如果你想更改它,请详细查看 slice_variable
函数。
代码示例
import paddle.fluid as fluid
config = fluid.DistributeTranspilerConfig()
config.slice_var_up = True
ExecutionStrategy¶
-
class
paddle.fluid.
ExecutionStrategy
¶
ExecutionStrategy
允许用户更加精准地控制program在 ParallelExecutor
中的运行方式。可以通过在 ParallelExecutor
中设置本成员来实现。
代码示例
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_loss)
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = 4
train_exe = fluid.ParallelExecutor(use_cuda=False,
loss_name=avg_loss.name,
exec_strategy=exec_strategy)
-
allow_op_delay
¶
这是一个bool类型成员,表示是否推迟communication operators(交流运算)的执行,这样做会使整体执行过程更快一些。但是在一些模型中,allow_op_delay会导致程序中断。默认为False。
-
num_iteration_per_drop_scope
¶
int型成员。它表明了清空执行时产生的临时变量需要的程序执行迭代次数。因为临时变量的形状可能在两次重复过程中保持一致,所以它会使整体执行过程更快。默认值为1。
注解
- 如果在调用
run
方法时获取结果数据,ParallelExecutor
会在当前程序重复执行尾部清空临时变量 - 在一些NLP模型里,该成员会致使GPU内存不足。此时,你应减少
num_iteration_per_drop_scope
的值
-
num_iteration_per_run
¶
它配置了当用户在python脚本中调用pe.run()时执行器会执行的迭代次数。
-
num_threads
¶
int型成员。它代表了线程池(thread pool)的大小。这些线程会被用来执行当前 ParallelExecutor
的program中的operator(算子,运算)。如果 \(num\_threads=1\) ,则所有的operator将一个接一个地执行,但在不同的程序重复周期(iterations)中执行顺序可能不同。如果该成员没有被设置,则在 ParallelExecutor
中,它会依据设备类型(device type)、设备数目(device count)而设置为相应值。对GPU,\(num\_threads=device\_count∗4\) ;对CPU, \(num\_threads=CPU\_NUM∗4\) 。在 ParallelExecutor
中有关于 \(CPU\_NUM\) 的详细解释。如果没有设置 \(CPU\_NUM\) , ParallelExecutor
可以通过调用 multiprocessing.cpu_count()
获取CPU数目(cpu count)。默认值为0。
Executor¶
执行引擎(Executor)使用python脚本驱动,支持在单/多GPU、单/多CPU环境下运行。 Python Executor可以接收传入的program,并根据feed map(输入映射表)和fetch_list(结果获取表) 向program中添加feed operators(数据输入算子)和fetch operators(结果获取算子)。 feed map为该program提供输入数据。fetch_list提供program训练结束后用户预期的变量(或识别类场景中的命名)。
应注意,执行器会执行program中的所有算子而不仅仅是依赖于fetch_list的那部分。
Executor将全局变量存储到全局作用域中,并为临时变量创建局部作用域。 当每一mini-batch上的前向/反向运算完成后,局部作用域的内容将被废弃, 但全局作用域中的变量将在Executor的不同执行过程中一直存在。
示例代码
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import numpy
import os
use_cuda = True
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
data = fluid.layers.data(name='X', shape=[1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)
# 仅运行一次startup program
# 不需要优化/编译这个startup program
startup_program.random_seed=1
exe.run(startup_program)
# 无需编译,直接运行main program
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = exe.run(train_program,
feed={"X": x},
fetch_list=[loss.name])
# 另一种方法是,编译这个main program然后运行。
# 参考CompiledProgram以获取更多信息。
# 注意:如果你使用CPU运行程序,需要具体设置CPU_NUM,
# 否则fluid会把逻辑核的所有数目设为CPU_NUM,
# 在这种情况下,输入的batch size应大于CPU_NUM,
# 否则程序会异常中断。
if not use_cuda:
os.environ['CPU_NUM'] = str(2)
compiled_prog = compiler.CompiledProgram(
train_program).with_data_parallel(
loss_name=loss.name)
loss_data, = exe.run(compiled_prog,
feed={"X": x},
fetch_list=[loss.name])
- 参数:
- place (fluid.CPUPlace|fluid.CUDAPlace(n)) – 指明了
Executor
的执行场所
- place (fluid.CPUPlace|fluid.CUDAPlace(n)) – 指明了
-
close
()¶
关闭这个执行器(Executor)。
调用这个方法后不可以再使用这个执行器。 对于分布式训练, 该函数会释放在PServers上和目前Trainer有关联的资源。
示例代码
import paddle.fluid as fluid
cpu = fluid.CPUPlace()
exe = fluid.Executor(cpu)
# 执行训练或测试过程
exe.close()
-
run
(program=None, feed=None, fetch_list=None, feed_var_name='feed', fetch_var_name='fetch', scope=None, return_numpy=True, use_program_cache=False)¶
调用该执行器对象的此方法可以执行program。通过feed map提供待学习数据,以及借助fetch_list得到相应的结果。 Python执行器(Executor)可以接收传入的program,并根据输入映射表(feed map)和结果获取表(fetch_list) 向program中添加数据输入算子(feed operators)和结果获取算子(fetch operators)。 feed map为该program提供输入数据。fetch_list提供program训练结束后用户预期的变量(或识别类场景中的命名)。
应注意,执行器会执行program中的所有算子而不仅仅是依赖于fetch_list的那部分。
示例代码
import paddle.fluid as fluid
import numpy
#首先创建执行引擎
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
exe = fluid.Executor(place)
data = fluid.layers.data(name='X', shape=[1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
adam = fluid.optimizer.Adam()
adam.minimize(loss)
#仅运行startup程序一次
exe.run(fluid.default_startup_program())
x = numpy.random.random(size=(10, 1)).astype('float32')
outs = exe.run(feed={'X': x},
fetch_list=[loss.name])
- 参数:
- program (Program|CompiledProgram) – 需要执行的program,如果没有给定那么默认使用default_main_program (未编译的)
- feed (dict) – 前向输入的变量,数据,词典dict类型, 例如 {“image”: ImageData, “label”: LabelData}
- fetch_list (list) – 用户想得到的变量或者命名的列表, 该方法会根据这个列表给出结果
- feed_var_name (str) – 前向算子(feed operator)变量的名称
- fetch_var_name (str) – 结果获取算子(fetch operator)的输出变量名称
- scope (Scope) – 执行这个program的域,用户可以指定不同的域。缺省为全局域
- return_numpy (bool) – 如果为True,则将结果张量(fetched tensor)转化为numpy
- use_program_cache (bool) – 是否跨批使用缓存程序设置。设置为True时,只有当(1)程序没有用数据并行编译,并且(2)program、 feed变量名和fetch_list变量名与上一步相比没有更改时,运行速度才会更快。
返回: 根据fetch_list来获取结果
返回类型: list(numpy.array)
-
infer_from_dataset
(program=None, dataset=None, scope=None, thread=0, debug=False, fetch_list=None, fetch_info=None, print_period=100)¶
infer_from_dataset的文档与train_from_dataset几乎完全相同,只是在分布式训练中,推进梯度将在infer_from_dataset中禁用。 infer_from_dataset()可以非常容易地用于多线程中的评估。
- 参数:
- program (Program|CompiledProgram) – 需要执行的program,如果没有给定那么默认使用default_main_program (未编译的)
- dataset (paddle.fluid.Dataset) – 在此函数外创建的数据集,用户应当在调用函数前提供完整定义的数据集。必要时请检查Dataset文件。默认为None
- scope (Scope) – 执行这个program的域,用户可以指定不同的域。默认为全局域
- thread (int) – 用户想要在这个函数中运行的线程数量。线程的实际数量为min(Dataset.thread_num, thread),如果thread > 0,默认为0
- debug (bool) – 是否开启debug模式,默认为False
- fetch_list (Variable List) – 返回变量列表,每个变量都会在训练过程中被打印出来,默认为None
- fetch_info (String List) – 每个变量的打印信息,默认为None
- print_period (int) – 每两次打印之间间隔的mini-batches的数量,默认为100
返回: None
示例代码
import paddle.fluid as fluid
place = fluid.CPUPlace() # 使用GPU时可设置place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
dataset = fluid.DatasetFactory().create_dataset()
dataset.set_use_var([x, y])
dataset.set_thread(1)
filelist = [] # 您可以设置您自己的filelist,如filelist = ["dataA.txt"]
dataset.set_filelist(filelist)
exe.run(fluid.default_startup_program())
exe.infer_from_dataset(program=fluid.default_main_program(),dataset=dataset)
-
train_from_dataset
(program=None, dataset=None, scope=None, thread=0, debug=False, fetch_list=None, fetch_info=None, print_period=100)¶
从预定义的数据集中训练。 数据集在paddle.fluid.dataset中定义。 给定程序(或编译程序),train_from_dataset将使用数据集中的所有数据样本。 输入范围可由用户给出。 默认情况下,范围是global_scope()。训练中的线程总数是thread。 训练中使用的线程数将是数据集中threadnum的最小值,同时也是此接口中线程的值。 可以设置debug,以便执行器显示所有算子的运行时间和当前训练任务的吞吐量。
注意:train_from_dataset将销毁每次运行在executor中创建的所有资源。
- 参数:
- program (Program|CompiledProgram) – 需要执行的program,如果没有给定那么默认使用default_main_program (未编译的)
- dataset (paddle.fluid.Dataset) – 在此函数外创建的数据集,用户应当在调用函数前提供完整定义的数据集。必要时请检查Dataset文件。默认为None
- scope (Scope) – 执行这个program的域,用户可以指定不同的域。默认为全局域
- thread (int) – 用户想要在这个函数中运行的线程数量。线程的实际数量为min(Dataset.thread_num, thread),如果thread > 0,默认为0
- debug (bool) – 是否开启debug模式,默认为False
- fetch_list (Variable List) – 返回变量列表,每个变量都会在训练过程中被打印出来,默认为None
- fetch_info (String List) – 每个变量的打印信息,默认为None
- print_period (int) – 每两次打印之间间隔的mini-batches的数量,默认为100
返回: None
示例代码
import paddle.fluid as fluid
place = fluid.CPUPlace() # 通过设置place = fluid.CUDAPlace(0)使用GPU
exe = fluid.Executor(place)
x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
dataset = fluid.DatasetFactory().create_dataset()
dataset.set_use_var([x, y])
dataset.set_thread(1)
filelist = [] # 您可以设置您自己的filelist,如filelist = ["dataA.txt"]
dataset.set_filelist(filelist)
exe.run(fluid.default_startup_program())
exe.train_from_dataset(program=fluid.default_main_program(),
dataset=dataset)
global_scope¶
获取全局/默认作用域实例。很多api使用默认 global_scope
,例如 Executor.run
。
示例代码
import paddle.fluid as fluid
import numpy
fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
numpy.array(fluid.global_scope().find_var("data").get_tensor())
返回:全局/默认作用域实例
返回类型:Scope
gradients¶
将目标梯度反向传播到输入。
- 参数:
- targets (Variable|list[Variable]) – 目标变量
- inputs (Variable|list[Variable]) – 输入变量
- target_gradients (Variable|list[Variable]|None) – 目标的梯度变量,应与目标变量形状相同;如果设置为None,则以1初始化所有梯度变量
- no_grad_sethread (set[string]) – 在Block 0中不具有梯度的变量,所有block中被设置
stop_gradient=True
的变量将被自动加入该set
返回:数组,包含与输入对应的梯度。如果一个输入不影响目标函数,则对应的梯度变量为None
返回类型:(list[Variable])
示例代码
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[2,8,8], dtype='float32')
x.stop_gradient=False
y = fluid.layers.conv2d(x, 4, 1, bias_attr=False)
y = fluid.layers.relu(y)
y = fluid.layers.conv2d(y, 4, 1, bias_attr=False)
y = fluid.layers.relu(y)
z = fluid.gradients([y], x)
print(z)
in_dygraph_mode¶
检查程序状态(tracer) - 是否在dygraph模式中运行
返回:如果Program是在动态图模式下运行的则为True。
返回类型:out(boolean)
示例代码
import paddle.fluid as fluid
if fluid.in_dygraph_mode():
pass
LoDTensor¶
-
class
paddle.fluid.
LoDTensor
¶
LoDTensor是一个具有LoD信息的张量(Tensor)
np.array(lod_tensor)
可以将LoDTensor转换为numpy array。
lod_tensor.lod()
可以获得LoD信息。
LoD是多层序列(Level of Details)的缩写,通常用于不同长度的序列。如果您不需要了解LoD信息,可以跳过下面的注解。
举例:
X 为 LoDTensor,它包含两个逻辑子序列。第一个长度是2,第二个长度是3。
从Lod中可以计算出X的第一维度为5, 因为5=2+3。在X中的每个序列中的每个元素有2列,因此X的shape为[5,2]。
x.lod = [[2, 3]]
x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
x.shape = [5, 2]
LoD可以有多个level(例如,一个段落可以有多个句子,一个句子可以有多个单词)。下面的例子中,Y为LoDTensor ,lod_level为2。表示有2个逻辑序列,第一个逻辑序列的长度是2(有2个子序列),第二个逻辑序列的长度是1。第一个逻辑序列的两个子序列长度分别为2和2。第二个序列的子序列的长度是3。
y.lod = [[2 1], [2 2 3]]
y.shape = [2+2+3, ...]
示例代码
import paddle.fluid as fluid
t = fluid.LoDTensor()
注解
在上面的描述中,LoD是基于长度的。在paddle内部实现中,lod是基于偏移的。因此,在内部,y.lod表示为[[0,2,3],[0,2,4,7]](基于长度的Lod表示为为[[2-0,3-2],[2-0,4-2,7-4]])。
可以将LoD理解为recursive_sequence_length(递归序列长度)。此时,LoD必须是基于长度的。由于历史原因,当LoD在API中被称为lod时,它可能是基于偏移的。用户应该注意。
-
has_valid_recursive_sequence_lengths(self: paddle.fluid.core.LoDTensor) → bool
检查LoDTensor的lod值的正确性。
返回: 是否带有正确的lod值
返回类型: out (bool)
示例代码
import paddle.fluid as fluid
import numpy as np
t = fluid.LoDTensor()
t.set(np.ndarray([5, 30]), fluid.CPUPlace())
t.set_recursive_sequence_lengths([[2, 3]])
print(t.has_valid_recursive_sequence_lengths()) # True
-
lod(self: paddle.fluid.core_avx.LoDTensor) → List[List[int]]
得到LoD Tensor的LoD。
返回:LoD Tensor的LoD。
返回类型:out(List [List [int]])
示例代码
import paddle.fluid as fluid
import numpy as np
t = fluid.LoDTensor()
t.set(np.ndarray([5, 30]), fluid.CPUPlace())
t.set_lod([[0, 2, 5]])
print(t.lod()) # [[0, 2, 5]]
-
recursive_sequence_lengths(self: paddle.fluid.core_avx.LoDTensor) → List[List[int]]
得到与LoD对应的LoDTensor的序列长度。
返回:LoD对应的一至多个序列长度。
返回类型:out(List [List [int])
示例代码
import paddle.fluid as fluid
import numpy as np
t = fluid.LoDTensor()
t.set(np.ndarray([5, 30]), fluid.CPUPlace())
t.set_recursive_sequence_lengths([[2, 3]])
print(t.recursive_sequence_lengths()) # [[2, 3]]
-
set
(*args, **kwargs)¶
重载函数
- set(self: paddle.fluid.core_avx.Tensor, arg0: numpy.ndarray[float32], arg1: paddle::platform::CPUPlace) -> None
- set(self: paddle.fluid.core_avx.Tensor, arg0: numpy.ndarray[int32], arg1: paddle::platform::CPUPlace) -> None
- set(self: paddle.fluid.core_avx.Tensor, arg0: numpy.ndarray[float64], arg1: paddle::platform::CPUPlace) -> None
- set(self: paddle.fluid.core_avx.Tensor, arg0: numpy.ndarray[int64], arg1: paddle::platform::CPUPlace) -> None
- set(self: paddle.fluid.core_avx.Tensor, arg0: numpy.ndarray[bool], arg1: paddle::platform::CPUPlace) -> None
- set(self: paddle.fluid.core_avx.Tensor, arg0: numpy.ndarray[uint16], arg1: paddle::platform::CPUPlace) -> None
- set(self: paddle.fluid.core_avx.Tensor, arg0: numpy.ndarray[uint8], arg1: paddle::platform::CPUPlace) -> None
- set(self: paddle.fluid.core_avx.Tensor, arg0: numpy.ndarray[int8], arg1: paddle::platform::CPUPlace) -> None
-
set_lod(self: paddle.fluid.core_avx.LoDTensor, lod: List[List[int]]) → None
设置LoDTensor的LoD。
参数: - lod (List [List [int]]) - 要设置的lod。
示例代码
import paddle.fluid as fluid
import numpy as np
t = fluid.LoDTensor()
t.set(np.ndarray([5, 30]), fluid.CPUPlace())
t.set_lod([[0, 2, 5]])
-
set_recursive_sequence_lengths(self: paddle.fluid.core.LoDTensor, recursive_sequence_lengths: List[List[int]]) → None
根据递归序列长度recursive_sequence_lengths设置LoDTensor的LoD。
例如,如果recursive_sequence_lengths = [[2,3]],意味着有两个长度分别为2和3的序列,相应的lod将是[[0,2,2 + 3]],即[[0, 2,5]]。
参数: - recursive_sequence_lengths (List [List [int]]) - 序列长度。
示例代码
import paddle.fluid as fluid
import numpy as np
t = fluid.LoDTensor()
t.set(np.ndarray([5, 30]), fluid.CPUPlace())
t.set_recursive_sequence_lengths([[2, 3]])
-
shape(self: paddle.fluid.core_avx.Tensor) → List[int]
LoDTensorArray¶
-
class
paddle.fluid.
LoDTensorArray
¶
LoDTensor的数组。
示例代码
import paddle.fluid as fluid
arr = fluid.LoDTensorArray()
-
append(self: paddle.fluid.core_avx.LoDTensorArray, tensor: paddle.fluid.core.LoDTensor) → None
将LoDTensor追加到LoDTensorArray后。
示例代码
import paddle.fluid as fluid
import numpy as np
arr = fluid.LoDTensorArray()
t = fluid.LoDTensor()
t.set(np.ndarray([5, 30]), fluid.CPUPlace())
arr.append(t)
memory_optimize¶
-
paddle.fluid.
memory_optimize
(input_program, skip_opt_set=None, print_log=False, level=0, skip_grads=False)[源代码]¶
历史遗留的内存优化策略,通过在不同operators间重用var内存来减少总内存消耗。 用一个简单的示例来解释该算法:
c = a + b # 假设这里是最后一次使用a d = b * c
鉴于在“c = a + b”之后不再使用a,且a和d的大小相同,我们可以用变量a来代替变量d,即实际上,上面的代码可以优化成:
c = a + b a = b * c
请注意,在此历史遗存设计中,我们将直接用变量a代替变量d,这意味着在你调用该API后,某些变量将会消失,还有一些会取非预期值。正如上面的例子中,执行程序后,实际上a取d的值。
因此,为避免重要变量在优化过程中被重用或移除,我们支持用skip_opt_set指定一个变量白名单。skip_opt_set中的变量不会受memory_optimize API的影响。
注解
此API已被弃用,请不要在你新写的代码中使用它。它不支持block中嵌套子block,如While、IfElse等。
- 参数:
- input_program (str) – 输入Program。
- skip_opt_set (set) – set中的vars将不被内存优化。
- print_log (bool) – 是否打印debug日志。
- level (int) - 值为0或1。如果level=0,则仅当a.size == b.size时我们才用b代替a;如果level=1,只要a.size <= b.size时我们就可以用b代替a。
返回: None
示例代码
import paddle.fluid as fluid
main_prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
fluid.memory_optimize(main_prog)
name_scope¶
为operators生成层次名称前缀
注意: 这个函数只能用于调试和可视化。不要将其用于分析,比如graph/program转换。
- 参数:
- prefix (str) - 前缀
示例代码
import paddle.fluid as fluid
with fluid.name_scope("s1"):
a = fluid.layers.data(name='data', shape=[1], dtype='int32')
b = a + 1
with fluid.name_scope("s2"):
c = b * 1
with fluid.name_scope("s3"):
d = c / 1
with fluid.name_scope("s1"):
f = fluid.layers.pow(d, 2.0)
with fluid.name_scope("s4"):
g = f - 1
ParallelExecutor¶
-
class
paddle.fluid.
ParallelExecutor
(use_cuda, loss_name=None, main_program=None, share_vars_from=None, exec_strategy=None, build_strategy=None, num_trainers=1, trainer_id=0, scope=None)[源代码]¶
ParallelExecutor
专门设计用来实现数据并行计算,着力于向不同结点(node)分配数据,并行地在不同结点中对数据进行操作。如果在GPU上使用该类运行程序,node则用来指代GPU, ParallelExecutor
也将自动获取在当前机器上可用的GPU资源。如果在CPU上进行操作,node则指代CPU,同时你也可以通过添加环境变量 CPU_NUM
来设置CPU设备的个数。例如,CPU_NUM=4
。但是如果没有设置该环境变量,该类会调用 multiprocessing.cpu_count
来获取当前系统中CPU的个数。
示例代码
import paddle.fluid as fluid
import numpy
import os
use_cuda = True
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
# 注意:如果你使用CPU运行程序,需要具体设置CPU_NUM,
# 否则fluid会把逻辑核的所有数目设为CPU_NUM,
# 在这种情况下,输入的batch size应大于CPU_NUM,
# 否则程序会异常中断。
if not use_cuda:
os.environ['CPU_NUM'] = str(2)
exe = fluid.Executor(place)
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
data = fluid.layers.data(name='X', shape=[1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
test_program = fluid.default_main_program().clone(for_test=True)
fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)
startup_program.random_seed=1
exe.run(startup_program)
train_exe = fluid.ParallelExecutor(use_cuda=use_cuda,
main_program=train_program,
loss_name=loss.name)
test_exe = fluid.ParallelExecutor(use_cuda=use_cuda,
main_program=test_program,
share_vars_from=train_exe)
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = train_exe.run(feed={"X": x},
fetch_list=[loss.name])
loss_data, = test_exe.run(feed={"X": x},
fetch_list=[loss.name])
- 参数:
- use_cuda (bool) – 是否使用CUDA
- loss_name (str) – 在训练阶段,必须提供loss function名称。默认为None
- main_program (Program) – 需要执行的program。如果未提供, 那么将使用
default_main_program
。 默认为None - share_vars_from (ParallelExecutor) – 如果提供了该参数, 则该
ParallelExecutor
与指定的ParallelExecutor
共享变量。默 认为空 - exec_strategy (ExecutionStrategy) –
exec_strategy
用于调控program在ParallelExecutor
中的执行方式,例如,执行该program需要的线程数, 释放在执行过程中产生的临时变量需要的重复(iterations)次数。 请参考fluid.ExecutionStrategy
获取详细介绍。该参数默认为 None - build_strategy (BuildStrategy) – 设置成员
build_strategy
可以控制在ParallelExecutor
中搭建SSA Graph的方式,例如,reduce_strategy
,gradient_scale_strategy
。 请参考fluid.BuildStrategy
获取详细介绍。 该参数默认为None - num_trainers (int) – 如果该值大于1, NCCL将会通过多层级node的方式来初始化。每个node应有相同的GPU数目。 随之会启用分布式训练。该参数默认为1
- trainer_id (int) – 必须与
num_trainers
参数同时使用。trainer_id
是当前所在node的 “rank”(层级),从0开始计数。该参数默认为0 - scope (Scope) – 指定执行program所在的作用域, 默认使用
fluid.global_scope()
返回:初始化后的 ParallelExecutor
对象
返回类型: ParallelExecutor
抛出异常:TypeError
- 如果提供的参数 share_vars_from
不是 ParallelExecutor
类型的,将会弹出此异常
-
run
(fetch_list, feed=None, feed_dict=None, return_numpy=True)
使用 fetch_list
执行一个 ParallelExecutor
对象。
参数 feed
可以是 dict
或者 list
类型变量。如果该参数是 dict
类型,feed中的数据将会被分割(split)并分送给多个设备(CPU/GPU)。
反之,如果它是 list
,则列表中的各个元素都会直接分别被拷贝到各设备中。
示例代码
import paddle.fluid as fluid
import numpy
import os
use_cuda = True
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
# 注意:如果你使用CPU运行程序,需要具体设置CPU_NUM,
# 否则fluid会把逻辑核的所有数目设为CPU_NUM,
# 在这种情况下,输入的batch size应大于CPU_NUM,
# 否则程序会异常中断。
if not use_cuda:
os.environ['CPU_NUM'] = str(2)
exe = fluid.Executor(place)
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
data = fluid.layers.data(name='X', shape=[1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)
startup_program.random_seed=1
exe.run(startup_program)
train_exe = fluid.ParallelExecutor(use_cuda=use_cuda,
main_program=train_program,
loss_name=loss.name)
# 如果feed参数是dict类型:
# 图像会被split到设备中。假设有两个设备,那么每个设备将会处理形为 (5, 1)的图像
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = train_exe.run(feed={"X": x},
fetch_list=[loss.name])
# 如果feed参数是list类型:
# 各设备挨个处理列表中的每个元素
# 第一个设备处理形为 (10, 1) 的图像
# 第二个设备处理形为 (9, 1) 的图像
#
# 使用 exe.device_count 得到设备数目
x2 = numpy.random.random(size=(9, 1)).astype('float32')
loss_data, = train_exe.run(feed=[{"X": x}, {"X": x2}],
fetch_list=[loss.name])
- 参数:
- fetch_list (list) – 获取的变量名列表
- feed (list|dict|None) – feed变量。 如果该参数是
dict
类型,feed中的数据将会被分割(split)并分送给多个设备(CPU/GPU)。反之,如果它是list
,则列表中的各个元素都直接分别被拷贝到各设备中。默认为None - feed_dict – 该参数已经停止使用。feed参数的别名, 为向后兼容而立。默认为None
- return_numpy (bool) – 是否将fetched tensor转换为numpy。默认为True
返回: 获取的结果列表
返回类型:List
- 抛出异常:
ValueError
- 如果feed参数是list类型,但是它的长度不等于可用设备(执行场所)的数目,再或者给定的feed不是dict类型,抛出此异常TypeError
- 如果feed参数是list类型,但是它里面的元素不是dict类型时,弹出此异常
注解
- 如果feed参数为dict类型,那么传入
ParallelExecutor
的数据量 必须 大于可用的CPU核数或GPU卡数。否则,C++端将会抛出异常。应额外注意核对数据集的最后一个batch是否比可用的CPU核数或GPU卡数大。 - 如果可用的CPU核数或GPU卡数大于一个,则为每个变量最后获取的结果都是list类型,且这个list中的每个元素都是各CPU核或GPU卡上的变量
代码示例
import paddle.fluid as fluid
pe = fluid.ParallelExecutor(use_cuda=use_cuda,
loss_name=avg_cost.name,
main_program=fluid.default_main_program())
loss = pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name]))
-
drop_local_exe_scopes
()¶
立即删除本地执行作用域。
在程序执行期间,生成中间结果被放置在本地执行作用域内,在某些模型中,这些中间结果的创建和删除较为费时。为了解决这个问题,ParallelExecutor在ExecutionStrategy中提供了可选项,如num_iteration_per_drop_scope,此选项指示在删除本地执行作用域之前要运行的迭代次数。 但在某些情况下,每次迭代都会产生不同的中间结果,这将导致本地执行作用域所需的内存逐渐增加。 如果你想在这个时候运行另一个程序,可能没有足够的存储空间,此时你应该删除其他程序的本地执行作用域。
代码示例
import paddle.fluid as fluid
import numpy
import os
use_cuda = True
# 注意:如果你使用CPU运行程序,需要具体设置CPU_NUM,
# 否则fluid会把逻辑核的所有数目设为CPU_NUM,
# 在这种情况下,输入的batch size应大于CPU_NUM,
# 否则程序会异常中断。
if not use_cuda:
os.environ['CPU_NUM'] = str(2)
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
data = fluid.layers.data(name='X', shape=[1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_program)
parallel_exe = fluid.ParallelExecutor(use_cuda=use_cuda,
main_program=train_program,
loss_name=loss.name)
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = parallel_exe.run(feed={"X": x},
fetch_list=[loss.name])
parallel_exe.drop_local_exe_scopes()
ParamAttr¶
-
class
paddle.fluid.
ParamAttr
(name=None, initializer=None, learning_rate=1.0, regularizer=None, trainable=True, gradient_clip=None, do_model_average=False)[源代码]¶
该类代表了参数的各种属性。 为了使神经网络训练过程更加流畅,用户可以根据需要调整参数属性。比如learning rate(学习率), regularization(正则化), trainable(可训练性), do_model_average(平均化模型)和参数初始化方法.
- 参数:
- name (str) – 参数名。默认为None。
- initializer (Initializer) – 初始化该参数的方法。 默认为None
- learning_rate (float) – 参数的学习率。计算方法为 \(global\_lr*parameter\_lr∗scheduler\_factor\) 。 默认为1.0
- regularizer (WeightDecayRegularizer) – 正则因子. 默认为None
- trainable (bool) – 该参数是否可训练。默认为True
- gradient_clip (BaseGradientClipAttr) – 减少参数梯度的方法。默认为None
- do_model_average (bool) – 该参数是否服从模型平均值。默认为False
代码示例
import paddle.fluid as fluid
w_param_attrs = fluid.ParamAttr(name="fc_weight",
learning_rate=0.5,
regularizer=fluid.regularizer.L2Decay(1.0),
trainable=True)
x = fluid.layers.data(name='X', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)
Program¶
创建python program, 在paddleFluid内部会被转换为ProgramDesc描述语言,用来创建一段 c++ 程序。Program像容器一样,是一种自包含的程序语言。Program中包括至少一个块(Block),当 block 中存在条件选择的控制流op(例如 while_op)时,该Program将会含有嵌套块(nested block)。详情请参阅framework.proto。
注意:默认情况下,paddleFluid内部默认含有 default_startup_program
和 default_main_program
,它们将共享参数。 default_startup_program
只运行一次来初始化参数, default_main_program
在每个mini batch中运行并调整权重。
返回: empty program
代码示例
import paddle.fluid as fluid
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program=main_program, startup_program=startup_program):
x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")
print("main program is: {}".format(main_program))
print("start up program is: {}".format(startup_program))
-
to_string
(throw_on_error, with_details=False)¶
用于debug
- 参数:
- throw_on_error (bool): 没有设置任何必需的字段时,抛出值错误。
- with_details (bool): 值为true时,打印更多关于变量和参数的信息,如trainable, optimize_attr等
返回:(str): debug 字符串
返回类型: str
- 抛出异常:
ValueError
- 当throw_on_error == true
,但没有设置任何必需的字段时,抛出ValueError
。
代码示例
import paddle.fluid as fluid
prog = fluid.default_main_program()
prog_string = prog.to_string(throw_on_error=True, with_details=False)
print(prog_string)
-
clone
(for_test=False)¶
创建一个新的、相同的Program。
有些operator,在训练和测试之间的行为是不同的,比如 batch_norm
。它们有一个属性 is_test
来控制行为。当 for_test=True
时,此方法将把它们的 is_test
属性更改为True。
- 克隆Program用于训练时,将
for_test
设置为False。 - 克隆Program用于测试时,将
for_test
设置为True。我们不会在此处对程序进行任何裁剪,因此,如果您只是想要一个用于测试的前向计算程序,请在使用Opimizer.minimize
之前使用clone
- 注意:
Program.clone()
方法不会克隆py_reader
- 此API不会裁剪任何算子。请在backward和optimization之前使用
clone(for_test=True)
。例如:
import paddle.fluid as fluid test_program = fluid.default_main_program().clone(for_test=True) optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9) optimizer.minimize()
- 参数:
- for_test (bool) – 取值为True时,clone方法内部会把operator的属性
is_test
设置为 True
- for_test (bool) – 取值为True时,clone方法内部会把operator的属性
返回:一个新的、相同的Program
返回类型:Program
代码示例
注意,Program Desc在clone后的顺序可能不同,这不会影响您的训练或测试进程。在下面的示例中,我们为您提供了一个简单的方法print_prog(program)来打印程序描述,以确保clone后您仍能得到同样的打印结果:
import paddle.fluid as fluid
import six
def print_prog(prog):
for name, value in sorted(six.iteritems(prog.block(0).vars)):
print(value)
for op in prog.block(0).ops:
print("op type is {}".format(op.type))
print("op inputs are {}".format(op.input_arg_names))
print("op outputs are {}".format(op.output_arg_names))
for key, value in sorted(six.iteritems(op.all_attrs())):
if key not in ['op_callstack', 'op_role_var']:
print(" [ attrs: {}: {} ]".format(key, value))
1.克隆一个Program,示例代码如下。
import paddle.fluid as fluid
import six
def print_prog(prog):
for name, value in sorted(six.iteritems(prog.block(0).vars)):
print(value)
for op in prog.block(0).ops:
print("op type is {}".format(op.type))
print("op inputs are {}".format(op.input_arg_names))
print("op outputs are {}".format(op.output_arg_names))
for key, value in sorted(six.iteritems(op.all_attrs())):
if key not in ['op_callstack', 'op_role_var']:
print(" [ attrs: {}: {} ]".format(key, value))
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
with fluid.unique_name.guard():
img = fluid.layers.data(name='image', shape=[784])
hidden = fluid.layers.fc(input=img, size=200, act='relu')
hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
loss = fluid.layers.cross_entropy(
input=fluid.layers.fc(hidden, size=10, act='softmax'),
label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
avg_loss = fluid.layers.mean(loss)
test_program = train_program.clone(for_test=False)
print_prog(test_program)
with fluid.program_guard(train_program, startup_program):
with fluid.unique_name.guard():
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(avg_loss)
2.如果分别运行 train Program 和 test Program,则可以不使用clone。
import paddle.fluid as fluid
import six
def print_prog(prog):
for name, value in sorted(six.iteritems(prog.block(0).vars)):
print(value)
for op in prog.block(0).ops:
print("op type is {}".format(op.type))
print("op inputs are {}".format(op.input_arg_names))
print("op outputs are {}".format(op.output_arg_names))
for key, value in sorted(six.iteritems(op.all_attrs())):
if key not in ['op_callstack', 'op_role_var']:
print(" [ attrs: {}: {} ]".format(key, value))
def network(is_test):
img = fluid.layers.data(name='image', shape=[784])
hidden = fluid.layers.fc(input=img, size=200, act='relu')
hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
loss = fluid.layers.cross_entropy(
input=fluid.layers.fc(hidden, size=10, act='softmax'),
label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
avg_loss = fluid.layers.mean(loss)
return avg_loss
train_program_2 = fluid.Program()
startup_program_2 = fluid.Program()
test_program_2 = fluid.Program()
with fluid.program_guard(train_program_2, startup_program_2):
with fluid.unique_name.guard():
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(avg_loss)
# 不使用测试阶段的启动程序
with fluid.program_guard(test_program_2, fluid.Program()):
with fluid.unique_name.guard():
loss = network(is_test=True)
print(test_program_2)
上边两个代码片段生成和打印的Program是一样的。
-
static
parse_from_string
(binary_str)¶
反序列化protobuf,转换成program
注意:在序列化和反序列化之后,所有关于参数的信息都会丢失。
- 参数:
- binary_str_type (str) – prootbuf二进制字符串
返回: 反序列化后的ProgramDesc
返回类型:Program
-
num_blocks
¶
该program中的block的个数
代码示例
import paddle.fluid as fluid
prog = fluid.default_main_program()
num_blocks = prog.num_blocks
print(num_blocks)
-
random_seed
¶
程序中随机运算符的默认随机种子。0意味着从随机设备中获取随机种子。
注意:必须在operator被添加之前设置。
代码示例
import paddle.fluid as fluid
prog = fluid.default_main_program()
random_seed = prog.random_seed
print(random_seed)
prog.random_seed = 1
print(prog.random_seed)
-
global_block
()¶
获取该program的第一个block。
代码示例
import paddle.fluid as fluid
prog = fluid.default_main_program()
gb_block = prog.global_block()
print(gb_block)
-
block
(index)¶
返回该program中 , index
指定的block。 index
类型为int
返回:index对应的block
返回类型:Block
代码示例
import paddle.fluid as fluid
prog = fluid.default_main_program()
block_0 = prog.block(0)
print(block_0)
-
current_block
()¶
获取当前block。当前block是用来添加operators。
代码示例
import paddle.fluid as fluid
prog = fluid.default_main_program()
current_blk = prog.current_block()
print(current_blk)
-
list_vars
()¶
获取当前program中所有变量。返回值是一个可迭代对象(iterable object)。
返回:generator 会yield每个Program中的变量
返回类型:iterable
代码示例
import paddle.fluid as fluid
prog = fluid.default_main_program()
img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
for var in prog.list_vars():
print(var)
program_guard¶
该函数应配合使用python的“with”语句来改变全局主程序(main program)和启动程序(startup program)。
“with”语句块中的layer函数将在新的main program(主程序)中添加operators(算子)和variables(变量)。
代码示例
import paddle.fluid as fluid
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10, act='relu')
需要注意的是,如果用户不需要构建自己的启动程序或者主程序,一个临时的program将会发挥作用。
代码示例
import paddle.fluid as fluid
main_program = fluid.Program()
# 如果您不需要关心startup program,传入一个临时值即可
with fluid.program_guard(main_program, fluid.Program()):
data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
- 参数:
- main_program (Program) – “with”语句中将使用的新的main program。
- startup_program (Program) – “with”语句中将使用的新的startup program。若传入
None
则不改变当前的启动程序。
release_memory¶
该函数可以调整输入program,插入 delete_op
删除算子,提前删除不需要的变量。
改动是在变量本身上进行的。
提醒: 该API还在试验阶段,会在后期版本中删除。不建议用户使用。
- 参数:
- input_program (Program) – 在此program中插入
delete_op
- skip_opt_set (set) – 在内存优化时跳过的变量的集合
- input_program (Program) – 在此program中插入
返回: None
代码示例
import paddle.fluid as fluid
# 搭建网络
# ...
# 已弃用的API
fluid.release_memory(fluid.default_main_program())
scope_guard¶
修改全局/默认作用域(scope), 运行时中的所有变量都将分配给新的scope。
- 参数:
- scope - 新的全局/默认 scope。
代码示例
import paddle.fluid as fluid
import numpy
new_scope = fluid.Scope()
with fluid.scope_guard(new_scope):
fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
numpy.array(new_scope.find_var("data").get_tensor())
WeightNormParamAttr¶
-
class
paddle.fluid.
WeightNormParamAttr
(dim=None, name=None, initializer=None, learning_rate=1.0, regularizer=None, trainable=True, gradient_clip=None, do_model_average=False)[源代码]¶
权重归一化。权重归一化是将权重向量的长度与其方向解耦。Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks 这篇paper中讨论了权重归一化的实现
- 参数:
- dim (list) - 参数的名称。默认None。
- name (str) - 参数的名称。默认None。
- initializer (initializer) - 初始化参数的方法。默认None。
- learning_rate (float) - 学习率。优化时学习速率 \(global\_lr∗parameter\_lr∗scheduler\_factor\) 。默认1.0。
- regularizer (WeightDecayRegularizer) - 正则化因子。默认None。
- trainable (bool) - 参数是否可训练。默认True。
- gradient_clip (BaseGradientClipAttr) - 梯度下降裁剪(Gradient Clipping)的方法。默认None。
- do_model_average (bool) - 参数是否应该model average。默认False。
返回: empty program
代码示例
import paddle.fluid as fluid
data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
fc = fluid.layers.fc(input=data,
size=1000,
param_attr=fluid.WeightNormParamAttr(
dim=None,
name='weight_norm_param'))