fluid.initializer¶
BilinearInitializer¶
该初始化函数用于转置卷积函数,进行上采样。用户通过任意整型因子放大shape为(B,C,H,W)的特征图。用法如下:
代码示例:
import paddle.fluid as fluid
factor = 2
C = 2
w_attr = fluid.initializer.ParamAttr(
learning_rate=0.,
regularizer=fluid.regularizer.L2Decay(0.),
initializer=fluid.initializer.Bilinear())
x = fluid.layers.data(name="data", shape=[3, 32, 32],
dtype="float32")
conv_up = fluid.layers.conv2d_transpose(
input=x,
num_filters=C,
output_size=None,
filter_size=2 * factor - factor % 2,
padding=int(math.ceil((factor - 1) / 2.)),
stride=factor,
groups=C,
param_attr=w_attr,
bias_attr=False)
num_filters = C和groups = C 表示这是按通道转置的卷积函数。滤波器shape为(C,1,K,K),K为filter_size。该初始化函数为滤波器的每个通道设置(K,K)插值核。输出特征图的最终输出shape为(B,C,factor*H,factor*W)。注意学习率和权重衰减设为0,以便在训练过程中双线性插值的系数值保持不变
ConstantInitializer¶
常量初始器
- 参数:
- value (float) - 用常量初始化变量
代码示例
import paddle.fluid as fluid
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.Constant(value=2.0))
force_init_on_cpu¶
标志位,是否强制在CPU上进行变量初始化。
返回:状态,是否应强制在CPU上强制进行变量初始化
返回类型:bool
代码示例:
import paddle.fluid as fluid
if fluid.initializer.force_init_on_cpu():
step = fluid.layers.create_global_var(shape=[2,3], value=1.0, dtype='float32')
init_on_cpu¶
强制变量在 cpu 上初始化。
代码示例
import paddle.fluid as fluid
with fluid.initializer.init_on_cpu():
step = fluid.layers.create_global_var(shape=[2,3], value=1.0, dtype='float32')
MSRAInitializer¶
实现MSRA初始化(a.k.a. Kaiming初始化)
该类实现权重初始化方法,方法来自Kaiming He,Xiangyu Zhang,Shaoqing Ren 和 Jian Sun所写的论文: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 。这是一个鲁棒性特别强的初始化方法,并且适应了非线性激活函数(rectifier nonlinearities)。
在均匀分布中,范围为[-x,x],其中:
在正态分布中,均值为0,标准差为:
- 参数:
- uniform (bool) - 是否用均匀分布或正态分布
- fan_in (float) - MSRAInitializer的fan_in。如果为None,fan_in沿伸自变量
- seed (int) - 随机种子
注解
在大多数情况下推荐设置fan_in为None
代码示例:
import paddle.fluid as fluid
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=x, size=10, param_attr=fluid.initializer.MSRA(uniform=False))
NormalInitializer¶
随机正态(高斯)分布初始化器
- 参数:
- loc (float) - 正态分布的平均值
- scale (float) - 正态分布的标准差
- seed (int) - 随机种子
代码示例
import paddle.fluid as fluid
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
NumpyArrayInitializer¶
使用Numpy型数组来初始化参数变量。
- 参数:
- value (numpy) - 用于初始化变量的一个Numpy型数组。
代码示例
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[5], dtype='float32')
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
TruncatedNormalInitializer¶
Random Truncated Normal(高斯)分布初始化器
- 参数:
- loc (float) - 正态分布的平均值
- scale (float) - 正态分布的标准差
- seed (int) - 随机种子
代码示例
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[1], dtype='float32')
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
UniformInitializer¶
随机均匀分布初始化器
- 参数:
- low (float) - 下界
- high (float) - 上界
- seed (int) - 随机种子
代码示例
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[1], dtype='float32')
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
XavierInitializer¶
-
class
paddle.fluid.initializer.
XavierInitializer
(uniform=True, fan_in=None, fan_out=None, seed=0)[源代码]¶
该类实现Xavier权重初始化方法( Xavier weight initializer),Xavier权重初始化方法出自Xavier Glorot和Yoshua Bengio的论文 Understanding the difficulty of training deep feedforward neural networks
该初始化函数用于保持所有层的梯度尺度几乎一致。
在均匀分布的情况下,取值范围为[-x,x],其中:
正态分布的情况下,均值为0,标准差为:
- 参数:
- uniform (bool) - 是否用均匀分布或者正态分布
- fan_in (float) - 用于Xavier初始化的fan_in。如果为None,fan_in沿伸自变量
- fan_out (float) - 用于Xavier初始化的fan_out。如果为None,fan_out沿伸自变量
- seed (int) - 随机种子
注解
在大多数情况下推荐将fan_in和fan_out设置为None
代码示例:
import paddle.fluid as fluid
queries = fluid.layers.data(name='x', shape=[1], dtype='float32')
fc = fluid.layers.fc(
input=queries, size=10,
param_attr=fluid.initializer.Xavier(uniform=False))