UtilBase¶
分布式训练工具类,主要提供集合通信、文件系统操作等接口。
- all_reduce ( input, mode='sum', comm_world='worker' ) ¶
在指定的通信集合间进行归约操作,并将归约结果返回给集合中每个实例。
- 参数:
-
input (list|numpy.array) – 归约操作的输入。
mode (str) - 归约操作的模式,包含求和,取最大值和取最小值,默认为求和归约。
comm_world (str) - 归约操作的通信集合,包含: server集合(“server"),worker集合("worker")及所有节点集合("all"),默认为worker集合。
- 返回:
-
Numpy.array|None: 一个和 input 形状一致的numpy数组或None.
代码示例:
# Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` .
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet import PaddleCloudRoleMaker
import sys
import numpy as np
import os
os.environ["PADDLE_WITH_GLOO"] = "2"
def train():
role = PaddleCloudRoleMaker(
is_collective=False,
init_gloo=True,
path="./tmp_gloo")
fleet.init(role)
if fleet.is_server():
input = [1, 2]
output = fleet.util.all_reduce(input, "sum", "server")
print(output)
# [2, 4]
elif fleet.is_worker():
input = np.array([3, 4])
output = fleet.util.all_reduce(input, "sum", "worker")
print(output)
# [6, 8]
output = fleet.util.all_reduce(input, "sum", "all")
print(output)
# [8, 12]
if __name__ == "__main__":
train()
- barrier ( comm_world='worker' ) ¶
在指定的通信集合间进行阻塞操作,以实现集合间进度同步。
- 参数:
-
comm_world (str) - 阻塞操作的通信集合,包含: server集合(“server"),worker集合("worker")及所有节点集合("all"),默认为worker集合。
代码示例:
# Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` .
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet import PaddleCloudRoleMaker
import sys
import os
os.environ["PADDLE_WITH_GLOO"] = "2"
def train():
role = PaddleCloudRoleMaker(
is_collective=False,
init_gloo=True,
path="./tmp_gloo")
fleet.init(role)
if fleet.is_server():
fleet.util.barrier("server")
print("all server arrive here")
elif fleet.is_worker():
fleet.util.barrier("worker")
print("all server arrive here")
fleet.util.barrier("all")
print("all servers and workers arrive here")
if __name__ == "__main__":
train()
- all_gather ( input, comm_world='worker' ) ¶
在指定的通信集合间进行聚合操作,并将聚合的结果返回给集合中每个实例。
- 参数:
-
input (int|float) - 聚合操作的输入。
comm_world (str) - 聚合操作的通信集合,包含: server集合(“server"),worker集合("worker")及所有节点集合("all"),默认为worker集合。
- 返回:
-
output (List): List格式的聚合结果。
代码示例:
# Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` .
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet import PaddleCloudRoleMaker
import sys
import os
os.environ["PADDLE_WITH_GLOO"] = "2"
def train():
role = PaddleCloudRoleMaker(
is_collective=False,
init_gloo=True,
path="./tmp_gloo")
fleet.init(role)
if fleet.is_server():
input = fleet.server_index()
output = fleet.util.all_gather(input, "server")
print(output)
# output = [0, 1]
elif fleet.is_worker():
input = fleet.worker_index()
output = fleet.util.all_gather(input, "worker")
# output = [0, 1]
print(output)
output = fleet.util.all_gather(input, "all")
print(output)
# output = [0, 1, 0, 1]
if __name__ == "__main__":
train()
- get_file_shard ( files ) ¶
在数据并行的分布式训练中,获取属于当前训练节点的文件列表。
示例 1: 原始所有文件列表 `files` = [a, b, c ,d, e],训练节点个数 `trainer_num` = 2,那么属于零号节点的训练文件为[a, b, c],属于1号节点的训练文件为[d, e]。
示例 2: 原始所有文件列表 `files` = [a, b],训练节点个数 `trainer_num` = 3,那么属于零号节点的训练文件为[a],属于1号节点的训练文件为[b],属于2号节点的训练文件为[]。
- 参数:
-
files (List):原始所有文件列表。
- 返回:
-
List: 属于当前训练节点的文件列表。
代码示例:
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
role = role_maker.UserDefinedRoleMaker(
is_collective=False,
init_gloo=False,
current_id=0,
role=role_maker.Role.WORKER,
worker_endpoints=["127.0.0.1:6003", "127.0.0.1:6004"],
server_endpoints=["127.0.0.1:6001", "127.0.0.1:6002"])
fleet.init(role)
files = fleet.util.get_file_shard(["file1", "file2", "file3"])
print(files)
# files = ["file1", "file2"]
- print_on_rank ( message, rank_id ) ¶
在编号为 rank_id 的节点上打印指定信息。
- 参数:
-
message (str) – 打印内容。
rank_id (int) - 节点编号。
代码示例:
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
role = role_maker.UserDefinedRoleMaker(
is_collective=False,
init_gloo=False,
current_id=0,
role=role_maker.Role.WORKER,
worker_endpoints=["127.0.0.1:6003", "127.0.0.1:6004"],
server_endpoints=["127.0.0.1:6001", "127.0.0.1:6002"])
fleet.init(role)
fleet.util.print_on_rank("I'm worker 0", 0)