adaptive_avg_pool3d¶
- paddle.nn.functional. adaptive_avg_pool3d ( x, output_size, data_format='NCDHW', name=None ) [源代码] ¶
该算子根据输入 x , output_size 等参数对一个输入Tensor计算3D的自适应平均池化。输入和输出都是5-D Tensor, 默认是以 NCDHW 格式表示的,其中 N 是 batch size, C 是通道数, D 是特征图长度, H 是输入特征的高度, H 是输入特征的宽度。
计算公式如下:
\[ \begin{align}\begin{aligned}dstart &= floor(i * D_{in} / D_{out})\\dend &= ceil((i + 1) * D_{in} / D_{out})\\hstart &= floor(j * H_{in} / H_{out})\\hend &= ceil((j + 1) * H_{in} / H_{out})\\wstart &= floor(k * W_{in} / W_{out})\\wend &= ceil((k + 1) * W_{in} / W_{out})\\Output(i ,j, k) &= \frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}\end{aligned}\end{align} \]
参数¶
x (Tensor): 默认形状为(批大小,通道数,长度,高度,宽度),即NCDHW格式的5-D Tensor。 其数据类型为float16, float32, float64, int32或int64.
output_size (int|list|turple): 算子输出特征图的尺寸,如果其是list或turple类型的数值,必须包含三个元素,D,H和W。D,H和W既可以是int类型值也可以是None,None表示与输入特征尺寸相同。
data_format (str): 输入和输出的数据格式,可以是"NCDHW"和"NDHWC"。N是批尺寸,C是通道数,D是特征长度,H是特征高度,W是特征宽度。默认值:"NCDHW"。
name (str,可选): 操作的名称(可选,默认值为None)。更多信息请参见 Name。
返回¶
Tensor
, 默认形状为(批大小,通道数,输出特征长度,输出特征高度,输出特征宽度),即NCDHW格式的5-D Tensor,其数据类型与输入相同。
抛出异常¶
ValueError
- 如果data_format
既不是"NCDHW"也不是"NDHWC"。
代码示例¶
# adaptive avg pool3d
# suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
# output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
# of input data into l * m * n grids averagely and performs poolings in each
# grid to get output.
# adaptive avg pool performs calculations as follow:
#
# for i in range(l):
# for j in range(m):
# for k in range(n):
# dstart = floor(i * D / l)
# dend = ceil((i + 1) * D / l)
# hstart = floor(j * H / m)
# hend = ceil((j + 1) * H / m)
# wstart = floor(k * W / n)
# wend = ceil((k + 1) * W / n)
# output[:, :, i, j, k] =
# avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
import paddle
import numpy as np
input_data = np.random.rand(2, 3, 8, 32, 32)
x = paddle.to_tensor(input_data)
# x.shape is [2, 3, 8, 32, 32]
pool_out = paddle.nn.functional.adaptive_avg_pool3d(
x = x,
output_size=[3, 3, 3])
# pool_out.shape is [2, 3, 3, 3, 3]