flops¶
参数¶
net (paddle.nn.Layer||paddle.static.Program) - 网络实例,必须是 paddle.nn.Layer 的子类或者静态图下的 paddle.static.Program。
input_size (list) - 输入张量的大小。注意:仅支持batch_size=1。
custom_ops (dict,可选) - 字典,用于实现对自定义网络层的统计。字典的key为自定义网络层的class,value为统计网络层flops的函数,函数实现方法见示例代码。此参数仅在 'net' 为paddle.nn.Layer时生效。默认值:None。
print_detail (bool, 可选) - bool值,用于控制是否打印每个网络层的细节。默认值:False
返回¶
整型,网络模型的计算量。
代码示例¶
import paddle import paddle.nn as nn class LeNet(nn.Layer): def __init__(self, num_classes=10): super(LeNet, self).__init__() self.num_classes = num_classes self.features = nn.Sequential( nn.Conv2D( 1, 6, 3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2D(2, 2), nn.Conv2D( 6, 16, 5, stride=1, padding=0), nn.ReLU(), nn.MaxPool2D(2, 2)) if num_classes > 0: self.fc = nn.Sequential( nn.Linear(400, 120), nn.Linear(120, 84), nn.Linear( 84, 10)) def forward(self, inputs): x = self.features(inputs) if self.num_classes > 0: x = paddle.flatten(x, 1) x = self.fc(x) return x lenet = LeNet() # m 是 nn.Layer 的一个实类, x 是m的输入, y 是网络层的输出. def count_leaky_relu(m, x, y): x = x[0] nelements = x.numel() m.total_ops += int(nelements) FLOPs = paddle.flops(lenet, [1, 1, 28, 28], custom_ops= {nn.LeakyReLU: count_leaky_relu}, print_detail=True) print(FLOPs) #+--------------+-----------------+-----------------+--------+--------+ #| Layer Name | Input Shape | Output Shape | Params | Flops | #+--------------+-----------------+-----------------+--------+--------+ #| conv2d_2 | [1, 1, 28, 28] | [1, 6, 28, 28] | 60 | 47040 | #| re_lu_2 | [1, 6, 28, 28] | [1, 6, 28, 28] | 0 | 0 | #| max_pool2d_2 | [1, 6, 28, 28] | [1, 6, 14, 14] | 0 | 0 | #| conv2d_3 | [1, 6, 14, 14] | [1, 16, 10, 10] | 2416 | 241600 | #| re_lu_3 | [1, 16, 10, 10] | [1, 16, 10, 10] | 0 | 0 | #| max_pool2d_3 | [1, 16, 10, 10] | [1, 16, 5, 5] | 0 | 0 | #| linear_0 | [1, 400] | [1, 120] | 48120 | 48000 | #| linear_1 | [1, 120] | [1, 84] | 10164 | 10080 | #| linear_2 | [1, 84] | [1, 10] | 850 | 840 | #+--------------+-----------------+-----------------+--------+--------+ #Total Flops: 347560 Total Params: 61610