CosineAnnealingDecay¶
- class paddle.optimizer.lr. CosineAnnealingDecay ( learning_rate, T_max, eta_min=0, last_epoch=- 1, verbose=False ) [源代码] ¶
该接口使用 cosine annealing
的策略来动态调整学习率。
\[\begin{split}\begin{aligned} \eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right), & T_{cur} \neq (2k+1)T_{max}; \\ \eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min}) \left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right), & T_{cur} = (2k+1)T_{max}. \end{aligned}\end{split}\]
\(\eta_{max}\) 的初始值为 learning_rate
, \(T_{cur}\) 是SGDR(重启训练SGD)训练过程中的当前训练轮数。SGDR的训练方法可以参考文档 SGDR: Stochastic Gradient Descent with Warm Restarts. 这里只是实现了 cosine annealing
动态学习率,热启训练部分没有实现。
- 参数:
-
learning_rate (float) - 初始学习率,也就是公式中的 \(\eta_{max}\) ,数据类型为Python float。
T_max (float|int) - 训练的上限轮数,是余弦衰减周期的一半。
eta_min (float|int, 可选) - 学习率的最小值,即公式中的 \(\eta_{min}\) 。默认值为0。
last_epoch (int,可选) - 上一轮的轮数,重启训练时设置为上一轮的epoch数。默认值为 -1,则为初始学习率。
verbose (bool,可选) - 如果是
True
,则在每一轮更新时在标准输出 stdout 输出一条信息。默认值为False
。
返回:用于调整学习率的 CosineAnnealingDecay
实例对象。
代码示例
import paddle
import numpy as np
# train on default dynamic graph mode
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(5):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[None, 4, 5])
y = paddle.static.data(name='y', shape=[None, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(5):
out = exe.run(
main_prog,
feed={
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
- step ( epoch=None ) ¶
step函数需要在优化器的 optimizer.step() 函数之后调用,调用之后将会根据epoch数来更新学习率,更新之后的学习率将会在优化器下一轮更新参数时使用。
- 参数:
-
epoch (int,可选)- 指定具体的epoch数。默认值None,此时将会从-1自动累加
epoch
数。
- 返回:
-
无。
代码示例 :
参照上述示例代码。