sum

paddle. sum ( x, axis=None, dtype=None, keepdim=False, name=None ) [源代码]

该OP是对指定维度上的Tensor元素进行求和运算,并输出相应的计算结果。

参数:
  • x (Tensor)- 输入变量为多维Tensor,支持数据类型为float32,float64,int32,int64。

  • axis (int | list | tuple ,可选)- 求和运算的维度。如果为None,则计算所有元素的和并返回包含单个元素的Tensor变量,否则必须在 \([−rank(x),rank(x)]\) 范围内。如果 \(axis [i] <0\) ,则维度将变为 \(rank+axis[i]\) ,默认值为None。

  • dtype (str , 可选)- 输出变量的数据类型。若参数为空,则输出变量的数据类型和输入变量相同,默认值为None。

  • keepdim (bool)- 是否在输出Tensor中保留减小的维度。如 keepdim 为true,否则结果张量的维度将比输入张量小,默认值为False。

  • name (str , 可选)- 具体用法请参见 Name ,一般无需设置,默认值为None。

返回:

Tensor,在指定维度上进行求和运算的Tensor,数据类型和输入数据类型一致。

代码示例

import numpy as np
import paddle

# x is a Tensor variable with following elements:
#    [[0.2, 0.3, 0.5, 0.9]
#     [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the corresponding output tensor.
x_data = np.array([[0.2, 0.3, 0.5, 0.9],[0.1, 0.2, 0.6, 0.7]]).astype('float32')
x = paddle.to_tensor(x_data)
out1 = paddle.sum(x)  # [3.5]
out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]

# y is a Tensor variable with shape [2, 2, 2] and elements as below:
#      [[[1, 2], [3, 4]],
#      [[5, 6], [7, 8]]]
# Each example is followed by the corresponding output tensor.
y_data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]).astype('float32')
y = paddle.to_tensor(y_data)
out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]