SmoothL1Loss¶
该OP计算输入input和标签label间的SmoothL1损失,如果逐个元素的绝对误差低于1,则创建使用平方项的条件 ,否则为L1损失。在某些情况下,它可以防止爆炸梯度, 也称为Huber损失,该损失函数的数学计算公式如下:
\[loss(x,y) = \frac{1}{n}\sum_{i}z_i\]
`z_i`的计算公式如下:
\[\begin{split}\mathop{z_i} = \left\{\begin{array}{rcl} 0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\ delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise} \end{array} \right.\end{split}\]
参数¶
reduction (string, 可选): - 指定应用于输出结果的计算方式,数据类型为string,可选值有: none, mean, sum 。默认为 mean ,计算 mini-batch loss均值。设置为 sum 时,计算 mini-batch loss的总和。设置为 none 时,则返回loss Tensor。
delta (string, 可选): SmoothL1Loss损失的阈值参数,用于控制Huber损失对线性误差或平方误差的侧重。数据类型为float32。 默认值= 1.0。
name (string, 可选): - 操作的名称(可选,默认值为None)。更多信息请参见 Name。
输入¶
input (Tensor): 输入 Tensor, 数据类型为float32。其形状为 \([N, C]\) , 其中 C 为类别数。对于多维度的情形下,它的形状为 \([N, C, d_1, d_2, ..., d_k]\),k >= 1。
label (Tensor): 输入input对应的标签值,数据类型为float32。数据类型和input相同。
返回¶
Tensor, 计算 SmoothL1Loss 后的损失值。
代码示例¶
import paddle
import numpy as np
input_data = np.random.rand(3,3).astype("float32")
label_data = np.random.rand(3,3).astype("float32")
input = paddle.to_tensor(input_data)
label = paddle.to_tensor(label_data)
loss = paddle.nn.SmoothL1Loss()
output = loss(input, label)
print(output)