unfold

paddle.nn. Unfold ( kernel_size=[3, 3], strides=1, paddings=1, dilation=1, name=None ) [源代码]

该OP实现的功能与卷积中用到的im2col函数一样,通常也被称作为im2col过程。对于每一个卷积核覆盖下的区域,元素会被重新排成一列。当卷积核在整个图片上滑动时,将会形成一系列的列向量。对于每一个输入形状为[N, C, H, W]的 x ,都将会按照下面公式计算出一个形状为[N, Cout, Lout]的输出。

注解

对应的 functional方法 请参考: cn_api_nn_functional_unfold

样例

Given:
  x.shape = [5, 10, 25, 25]
  kernel_size = [3, 3]
  strides = 1
  paddings = 1

Return:
  out.shape = [5, 90, 625]
参数:
  • kernel_size (int|list of int) – 卷积核的尺寸,整数或者整型列表。如果为整型列表,应包含两个元素 [k_h, k_w] ,卷积核大小为 k_h * k_w ;如果为整数k,会被当作整型列表 [k, k] 处理

  • strides (int|list of int,可选) – 卷积步长,整数或者整型列表。如果为整型列表,应该包含两个元素 [stride_h, stride_w] 。如果为整数,则 stride_h = stride_w = strides 。默认值为1

  • paddings (int|list of int,可选) – 每个维度的扩展, 整数或者整型列表。如果为整型列表,长度应该为4或者2;长度为4 对应的padding参数是:[padding_top, padding_left,padding_bottom, padding_right],长度为2对应的padding参数是[padding_h, padding_w],会被当作[padding_h, padding_w, padding_h, padding_w]处理。如果为整数padding,则会被当作[padding, padding, padding, padding]处理。默认值为0

  • dilations (int|list of int,可选) – 卷积膨胀,整型列表或者整数。如果为整型列表,应该包含两个元素[dilation_h, dilation_w]。如果是整数dilation,会被当作整型列表[dilation, dilation]处理。默认值为1

  • name (str|None,可选) - 该参数供开发人员打印调试信息时使用,具体用法请参见 Name ,默认值为None。

形状

  • 输入 : 4-D Tensor,形状为[N, C, H, W],数据类型为float32或者float64

  • 输出 : 形状如上面所描述的[N, Cout, Lout],Cout每一个滑动block里面覆盖的元素个数,Lout是滑动block的个数,数据类型与 x 相同

代码示例:

import paddle
import paddle.nn as nn

x = paddle.randn((100,3,224,224))
unfold = nn.Unfold(kernel_sizes=[3, 3])
result = unfold(x)
print(result)