Dropout2D¶
根据丢弃概率 p,在训练过程中随机将某些通道特征图置 0 (对一个形状为 NCHW 的 4 维 Tensor,通道特征图指的是其中的形状为 HW 的 2 维特征图)。Dropout2D 可以提高通道特征图之间的独立性。论文请参考:Efficient Object Localization Using Convolutional Networks
在动态图模式下,请使用模型的 eval() 方法切换至测试阶段。
注解
对应的 functional 方法 请参考:dropout2d 。
参数¶
p (float,可选) - 将输入通道置 0 的概率,即丢弃概率。默认值为 0.5。
data_format (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是 NCHW 和 NHWC。其中 N 是批尺寸,C 是通道数,H 是特征高度,W 是特征宽度。默认值为 NCHW 。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
形状¶
输入 : 4-D Tensor 。
输出 : 4-D Tensor,形状与输入相同。
代码示例¶
>>> import paddle
>>> paddle.seed(100)
>>> x = paddle.rand([2, 2, 1, 3], dtype="float32")
>>> print(x)
Tensor(shape=[2, 2, 1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
[[[[0.55355281, 0.20714243, 0.01162981]],
[[0.51577556, 0.36369765, 0.26091650]]],
[[[0.18905126, 0.56219709, 0.00808361]],
[[0.78120756, 0.32112977, 0.90572405]]]])
>>> m = paddle.nn.Dropout2D(p=0.5)
>>> y_train = m(x)
>>> print(y_train)
Tensor(shape=[2, 2, 1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
[[[[1.10710561, 0.41428486, 0.02325963]],
[[1.03155112, 0.72739530, 0.52183300]]],
[[[0. , 0. , 0. ]],
[[0. , 0. , 0. ]]]])
>>> m.eval() # switch the model to test phase
>>> y_test = m(x)
>>> print(y_test)
Tensor(shape=[2, 2, 1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
[[[[0.55355281, 0.20714243, 0.01162981]],
[[0.51577556, 0.36369765, 0.26091650]]],
[[[0.18905126, 0.56219709, 0.00808361]],
[[0.78120756, 0.32112977, 0.90572405]]]])