Cauchy¶
柯西分布也叫柯西-洛伦兹分布,它是以奥古斯丁·路易·柯西与亨德里克·洛伦兹名字命名的连续概率分布。其在自然科学中有着非常广泛的应用。
柯西分布的概率密度函数(PDF):
参数¶
loc (float|Tensor) - 定义分布峰值位置的位置参数。数据类型为 float32 或 float64。
scale (float|Tensor) - 最大值一半处的一半宽度的尺度参数。数据类型为 float32 或 float64。必须为正值。
name (str,可选) - 操作的名称,一般无需设置,默认值为 None,具体用法请参见 Name。
代码示例¶
>>> import paddle
>>> from paddle.distribution import Cauchy
>>> # init Cauchy with float
>>> rv = Cauchy(loc=0.1, scale=1.2)
>>> print(rv.entropy())
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
2.71334577)
>>> # init Cauchy with N-Dim tensor
>>> rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
>>> print(rv.entropy())
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[2.53102422, 3.22417140])
属性¶
方法¶
sample(shape, name=None)¶
生成指定维度的样本。
注解
sample 方法没有梯度,如果需要的话,请使用 rsample 方法代替。
参数
shape (Sequence[int]) - 指定生成样本的维度。
name (str,可选) - 操作的名称,一般无需设置,默认值为 None,具体用法请参见 Name。
返回
Tensor,样本,其维度为 \(\text{sample shape} + \text{batch shape} + \text{event shape}\)。
代码示例
>>> import paddle
>>> from paddle.distribution import Cauchy
>>> # init Cauchy with float
>>> rv = Cauchy(loc=0.1, scale=1.2)
>>> print(rv.sample([10]).shape)
[10]
>>> # init Cauchy with 0-Dim tensor
>>> rv = Cauchy(loc=paddle.full((), 0.1), scale=paddle.full((), 1.2))
>>> print(rv.sample([10]).shape)
[10]
>>> # init Cauchy with N-Dim tensor
>>> rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
>>> print(rv.sample([10]).shape)
[10, 2]
>>> # sample 2-Dim data
>>> rv = Cauchy(loc=0.1, scale=1.2)
>>> print(rv.sample([10, 2]).shape)
[10, 2]
>>> rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
>>> print(rv.sample([10, 2]).shape)
[10, 2, 2]
rsample(shape, name=None)¶
重参数化采样,生成指定维度的样本。
参数
shape (Sequence[int]) - 指定生成样本的维度。
name (str,可选) - 操作的名称,一般无需设置,默认值为 None,具体用法请参见 Name。
返回
Tensor,样本,其维度为 \(\text{sample shape} + \text{batch shape} + \text{event shape}\)。
代码示例
>>> import paddle
>>> from paddle.distribution import Cauchy
>>> # init Cauchy with float
>>> rv = Cauchy(loc=0.1, scale=1.2)
>>> print(rv.rsample([10]).shape)
[10]
>>> # init Cauchy with 0-Dim tensor
>>> rv = Cauchy(loc=paddle.full((), 0.1), scale=paddle.full((), 1.2))
>>> print(rv.rsample([10]).shape)
[10]
>>> # init Cauchy with N-Dim tensor
>>> rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
>>> print(rv.rsample([10]).shape)
[10, 2]
>>> # sample 2-Dim data
>>> rv = Cauchy(loc=0.1, scale=1.2)
>>> print(rv.rsample([10, 2]).shape)
[10, 2]
>>> rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
>>> print(rv.rsample([10, 2]).shape)
[10, 2, 2]
prob(value)¶
value
的概率密度函数。
参数
value (Tensor) - 输入 Tensor。
返回
Tensor, value
的概率密度函数。
代码示例
>>> import paddle
>>> from paddle.distribution import Cauchy
>>> # init Cauchy with float
>>> rv = Cauchy(loc=0.1, scale=1.2)
>>> print(rv.prob(paddle.to_tensor(1.5)))
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
0.11234467)
>>> # broadcast to value
>>> rv = Cauchy(loc=0.1, scale=1.2)
>>> print(rv.prob(paddle.to_tensor([1.5, 5.1])))
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[0.11234467, 0.01444674])
>>> # init Cauchy with N-Dim tensor
>>> rv = Cauchy(loc=paddle.to_tensor([0.1, 0.1]), scale=paddle.to_tensor([1.0, 2.0]))
>>> print(rv.prob(paddle.to_tensor([1.5, 5.1])))
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[0.10753712, 0.02195240])
>>> # init Cauchy with N-Dim tensor with broadcast
>>> rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
>>> print(rv.prob(paddle.to_tensor([1.5, 5.1])))
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[0.10753712, 0.02195240])
log_prob(value)¶
对数概率密度函数
参数
value (Tensor) - 输入 Tensor。
返回
Tensor, value
的对数概率密度函数。
代码示例
>>> import paddle
>>> from paddle.distribution import Cauchy
>>> # init Cauchy with float
>>> rv = Cauchy(loc=0.1, scale=1.2)
>>> print(rv.log_prob(paddle.to_tensor(1.5)))
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
-2.18618369)
>>> # broadcast to value
>>> rv = Cauchy(loc=0.1, scale=1.2)
>>> print(rv.log_prob(paddle.to_tensor([1.5, 5.1])))
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[-2.18618369, -4.23728657])
>>> # init Cauchy with N-Dim tensor
>>> rv = Cauchy(loc=paddle.to_tensor([0.1, 0.1]), scale=paddle.to_tensor([1.0, 2.0]))
>>> print(rv.log_prob(paddle.to_tensor([1.5, 5.1])))
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[-2.22991920, -3.81887865])
>>> # init Cauchy with N-Dim tensor with broadcast
>>> rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
>>> print(rv.log_prob(paddle.to_tensor([1.5, 5.1])))
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[-2.22991920, -3.81887865])
cdf(value)¶
value
的累积分布函数 (CDF)
参数
value (Tensor) - 输入 Tensor。
返回
Tensor, value
的累积分布函数。
代码示例
>>> import paddle
>>> from paddle.distribution import Cauchy
>>> # init Cauchy with float
>>> rv = Cauchy(loc=0.1, scale=1.2)
>>> print(rv.cdf(paddle.to_tensor(1.5)))
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
0.77443725)
>>> # broadcast to value
>>> rv = Cauchy(loc=0.1, scale=1.2)
>>> print(rv.cdf(paddle.to_tensor([1.5, 5.1])))
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[0.77443725, 0.92502367])
>>> # init Cauchy with N-Dim tensor
>>> rv = Cauchy(loc=paddle.to_tensor([0.1, 0.1]), scale=paddle.to_tensor([1.0, 2.0]))
>>> print(rv.cdf(paddle.to_tensor([1.5, 5.1])))
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[0.80256844, 0.87888104])
>>> # init Cauchy with N-Dim tensor with broadcast
>>> rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
>>> print(rv.cdf(paddle.to_tensor([1.5, 5.1])))
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[0.80256844, 0.87888104])
entropy()¶
柯西分布的信息熵。
返回
Tensor,柯西分布的信息熵。
代码示例
>>> import paddle
>>> from paddle.distribution import Cauchy
>>> # init Cauchy with float
>>> rv = Cauchy(loc=0.1, scale=1.2)
>>> print(rv.entropy())
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
2.71334577)
>>> # init Cauchy with N-Dim tensor
>>> rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
>>> print(rv.entropy())
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[2.53102422, 3.22417140])
kl_divergence(other)¶
两个柯西分布之间的 KL 散度。
注解
[1] Frédéric Chyzak, Frank Nielsen, A closed-form formula for the Kullback-Leibler divergence between Cauchy distributions, 2019
参数
other (Cauchy) -
Cauchy
的实例。
返回
Tensor,两个柯西分布之间的 KL 散度。
代码示例
>>> import paddle
>>> from paddle.distribution import Cauchy
>>> rv = Cauchy(loc=0.1, scale=1.2)
>>> rv_other = Cauchy(loc=paddle.to_tensor(1.2), scale=paddle.to_tensor([2.3, 3.4]))
>>> print(rv.kl_divergence(rv_other))
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[0.19819736, 0.31532931])