shufflenet_v2_x2_0

paddle.vision.models. shufflenet_v2_x2_0 ( pretrained=False, **kwargs ) [源代码]

输出通道缩放比例为 2.0 的 ShuffleNetV2 模型,来自论文 "ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design"

参数

  • pretrained (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值为 False。

  • **kwargs (可选) - 附加的关键字参数,具体可选参数请参见 ShuffleNetV2

返回

Layer,输出通道缩放比例为 2.0 的 ShuffleNetV2 模型实例。

代码示例

>>> import paddle
>>> from paddle.vision.models import shufflenet_v2_x2_0

>>> # build model
>>> model = shufflenet_v2_x2_0()

>>> # build model and load imagenet pretrained weight
>>> # model = shufflenet_v2_x2_0(pretrained=True)

>>> x = paddle.rand([1, 3, 224, 224])
>>> out = model(x)

>>> print(out.shape)
[1, 1000]